Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 36(1): 2068-2079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34565280

RESUMO

Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient's enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.


Assuntos
Carnitina/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Lisossomos/efeitos dos fármacos , Chaperonas Moleculares/farmacologia , alfa-Glucosidases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Carnitina/química , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Humanos , Lisossomos/enzimologia , Chaperonas Moleculares/química , Estrutura Molecular , Relação Estrutura-Atividade
2.
Nat Commun ; 8(1): 1111, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29061980

RESUMO

Pompe disease, a rare lysosomal storage disease caused by deficiency of the lysosomal acid α-glucosidase (GAA), is characterized by glycogen accumulation, triggering severe secondary cellular damage and resulting in progressive motor handicap and premature death. Numerous disease-causing mutations in the gaa gene have been reported, but the structural effects of the pathological variants were unknown. Here we present the high-resolution crystal structures of recombinant human GAA (rhGAA), the standard care of Pompe disease. These structures portray the unbound form of rhGAA and complexes thereof with active site-directed inhibitors, providing insight into substrate recognition and the molecular framework for the rationalization of the deleterious effects of disease-causing mutations. Furthermore, we report the structure of rhGAA in complex with the allosteric pharmacological chaperone N-acetylcysteine, which reveals the stabilizing function of this chaperone at the structural level.


Assuntos
Doença de Depósito de Glicogênio Tipo II/enzimologia , alfa-Glucosidases/química , Acetilcisteína/química , Acetilcisteína/metabolismo , Domínio Catalítico , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Lisossomos/química , Lisossomos/enzimologia , Lisossomos/genética , Modelos Moleculares , Conformação Proteica , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
3.
Biochim Biophys Acta ; 1840(1): 367-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24060745

RESUMO

BACKGROUND: ß-N-acetylhexosaminidases, which are involved in a variety of biological processes including energy metabolism, cell proliferation, signal transduction and in pathogen-related inflammation and autoimmune diseases, are widely distributed in Bacteria and Eukaryotes, but only few examples have been found in Archaea so far. However, N-acetylgluco- and galactosamine are commonly found in the extracellular storage polymers and in the glycans decorating abundantly expressed glycoproteins from different Crenarchaeota Sulfolobus sp., suggesting that ß-N-acetylglucosaminidase activities could be involved in the modification/recycling of these cellular components. METHODS: A thermophilic ß-N-acetylglucosaminidase was purified from cellular extracts of S. solfataricus, strain P2, identified by mass spectrometry, and cloned and expressed in E. coli. Glycosidase assays on different strains of S. solfataricus, steady state kinetic constants, substrate specificity analysis, and the sensitivity to two inhibitors of the recombinant enzyme were also reported. RESULTS: A new ß-N-acetylglucosaminidase from S. solfataricus was unequivocally identified as the product of gene sso3039. The detailed enzymatic characterization demonstrates that this enzyme is a bifunctional ß-glucosidase/ß-N-acetylglucosaminidase belonging to family GH116 of the carbohydrate active enzyme (CAZy) classification. CONCLUSIONS: This study allowed us to propose that family GH116 is composed of three subfamilies, which show distinct substrate specificities and inhibitor sensitivities. GENERAL SIGNIFICANCE: The characterization of SSO3039 allows, for the first time in Archaea, the identification of an enzyme involved in the metabolism ß-N-acetylhexosaminide, an essential component of glycoproteins in this domain of life, and substantially increases our knowledge on the functional role and phylogenetic relationships amongst the GH116 CAZy family members.


Assuntos
Família Multigênica , Sulfolobus solfataricus/enzimologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida , Clonagem Molecular , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , beta-N-Acetil-Hexosaminidases/isolamento & purificação
4.
Nucleic Acids Res ; 34(7): 2098-108, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16617150

RESUMO

Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus solfataricus cells with the alkylating agent MMS. MMS-induced reverse gyrase degradation is highly specific, since (i) neither hydroxyurea (HU) nor puromycin have a similar effect, and (ii) topoisomerase VI and two chromatin components are not degraded. Reverse gyrase degradation does not depend on protein synthesis. Experiments in vitro show that direct exposure of cell extracts to MMS does not induce reverse gyrase degradation; instead, extracts from MMS-treated cells contain some factor(s) able to degrade the enzyme in extracts from control cells. In vitro, degradation is blocked by incubation with divalent metal chelators, suggesting that reverse gyrase is selectively degraded by a metal-dependent protease in MMS-treated cells. In addition, we find a striking concurrence of extensive genomic DNA degradation and reverse gyrase loss in MMS-treated cells. These results support the hypothesis that reverse gyrase plays an essential role in DNA thermoprotection and repair in hyperthermophilic organisms.


Assuntos
Alquilantes/toxicidade , Fragmentação do DNA , DNA Topoisomerases Tipo I/metabolismo , Metanossulfonato de Metila/toxicidade , Sulfolobus solfataricus/enzimologia , Proteínas Arqueais/metabolismo , DNA Arqueal/química , Hidroxiureia/toxicidade , Metaloproteases/metabolismo , Sulfolobus solfataricus/efeitos dos fármacos , Sulfolobus solfataricus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...