Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536214

RESUMO

Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.

2.
BMC Ecol ; 17(1): 43, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258487

RESUMO

BACKGROUND: The drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species. Here we characterize the colonization dynamics and abundance of nine species of Caenorhabditis nematodes in neotropical French Guiana, the most speciose known assemblage of this genus, with resource use overlap and notoriously similar external morphology despite deep genomic divergence. METHODS: To characterize the dynamics and specificity of colonization and exploitation of ephemeral resource patches, we conducted manipulative field experiments and the largest sampling effort to date for Caenorhabditis outside of Europe. This effort provides the first in-depth quantitative analysis of substrate specificity for Caenorhabditis in natural, unperturbed habitats. RESULTS: We amassed a total of 626 strain isolates from nine species of Caenorhabditis among 2865 substrate samples. With the two new species described here (C. astrocarya and C. dolens), we estimate that our sampling procedures will discover few additional species of these microbivorous animals in this tropical rainforest system. We demonstrate experimentally that the two most prevalent species (C. nouraguensis and C. tropicalis) rapidly colonize fresh resource patches, whereas at least one rarer species shows specialist micro-habitat fidelity. CONCLUSION: Despite the potential to colonize rapidly, these ephemeral patchy resources of rotting fruits and flowers are likely to often remain uncolonized by Caenorhabditis prior to their complete decay, implying dispersal-limited resource exploitation. We hypothesize that a combination of rapid colonization, high ephemerality of resource patches, and species heterogeneity in degree of specialization on micro-habitats and life histories enables a dynamic co-existence of so many morphologically cryptic species of Caenorhabditis.


Assuntos
Distribuição Animal , Caenorhabditis/fisiologia , Ecossistema , Animais , Biota , Guiana Francesa , Densidade Demográfica
3.
Evol Dev ; 17(6): 380-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26492828

RESUMO

Thermal developmental plasticity represents a key organismal adaptation to maintain reproductive capacity in contrasting and fluctuating temperature niches. Although extensively studied, research on thermal plasticity has mainly focused on phenotypic outcomes, such as adult life history, rather than directly measuring plasticity of underlying developmental processes. How thermal plasticity of developmental phenotypes maps into plasticity of resulting final phenotypes, and how such mapping relationships evolve, thus remain poorly understood. Here we address these questions by quantifying thermal plasticity of Caenorhabditis hermaphrodite germline development. We integrate measurements of germline development and fertility at the upper thermal range in isolates of C. briggsae, C. elegans, and C. tropicalis. First, we compare intra- and interspecific variation in thermal germline plasticity with plasticity in reproductive output. Second, we ask whether the developmental errors leading to fertility break-down at upper thermal limits are evolutionarily conserved. We find that temperature variation modulates spermatogenesis, oogenesis and germ cell progenitor pools, yet the thermal sensitivity of these processes varies among isolates and species, consistent with evolutionary variation in upper thermal limits of hermaphrodite fertility. Although defective sperm function is a major contributor to heat-induced fertility break-down, high temperature also significantly perturbs oogenesis, germline integrity, and mitosis-meiosis progression. Remarkably, the occurrence and frequency of specific errors are strongly species- and genotype-dependent, indicative of evolutionary divergence in thermal sensitivity of distinct processes in germline development. Therefore, the Caenorhabditis reproductive system displays complex genotype-by-temperature interactions at the developmental level, which may remain masked when studying thermal plasticity exclusively at the life history level.


Assuntos
Caenorhabditis/fisiologia , Fertilidade , Oogênese , Espermatogênese , Animais , Caenorhabditis/embriologia , Caenorhabditis/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Organismos Hermafroditas/crescimento & desenvolvimento , Organismos Hermafroditas/fisiologia , Temperatura
4.
Evolution ; 67(11): 3087-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24151995

RESUMO

Theory and empirical study produce clear links between mating system evolution and inbreeding depression. The connections between mating systems and outbreeding depression, whereby fitness is reduced in crosses of less related individuals, however, are less well defined. Here we investigate inbreeding and outbreeding depression in self-fertile androdioecious nematodes, focusing on Caenorhabditis sp. 11. We quantify nucleotide polymorphism for nine nuclear loci for strains throughout its tropical range, and find some evidence of genetic differentiation despite the lowest sequence diversity observed in this genus. Controlled crosses between strains from geographically separated regions show strong outbreeding depression, with reproductive output of F1s reduced by 36% on average. Outbreeding depression is therefore common in self-fertilizing Caenorhabditis species, each of which evolved androdioecious selfing hermaphroditism independently, but appears strongest in C. sp. 11. Moreover, the poor mating efficiency of androdioecious males extends to C. sp. 11. We propose that self-fertilization is a key driver of outbreeding depression, but that it need not evolve as a direct result of local adaptation per se. Our verbal model of this process highlights the need for formal theory, and C. sp. 11 provides a convenient system for testing the genetic mechanisms that cause outbreeding depression, negative epistasis, and incipient speciation.


Assuntos
Caenorhabditis/fisiologia , Organismos Hermafroditas , Polimorfismo Genético , Autofertilização , Animais , Evolução Biológica , Caenorhabditis/genética , Endogamia , Masculino , Dados de Sequência Molecular , Reprodução , Análise de Sequência de DNA
5.
BMC Evol Biol ; 13: 10, 2013 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-23311925

RESUMO

BACKGROUND: In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. METHODS: Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. RESULTS: Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. CONCLUSIONS: The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species.


Assuntos
Biodiversidade , Caenorhabditis/genética , Variação Genética , Animais , Caenorhabditis/classificação , DNA de Helmintos/genética , Ecossistema , Guiana Francesa , Frutas , Filogenia , Análise de Sequência de DNA , Árvores , Clima Tropical
6.
J Exp Bot ; 62(3): 939-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21071678

RESUMO

AtNoa1/Rif1 (formerly referred to as AtNos1) has been shown to modulate nitric oxide (NO) content in Arabidopsis. As NO generation in the legume-rhizobium symbiosis has been shown, the involvement of an AtNoa1/Rif1 orthologue from Medicago truncatula (MtNoa1/Rif1) during its symbiotic interaction with Sinorhizobium meliloti has been studied. The expression of MtNoa1/Rif1 appeared to occur mainly in nodule vascular bundles and the meristematic zone. Using an RNA interference strategy, transgenic roots exhibiting a significantly decreased level of MtNoa1/Rif1 expression were analysed. NO production was assessed using a fluorescent probe, and the symbiotic capacities of the composite plants upon infection with Sinorhizobium meliloti were determined. The decrease in MtNoa1/Rif1 expression level resulted in a decrease in NO production in roots, but not in symbiotic nodules, indicating a different regulation of NO synthesis in these organs. However, it significantly lowered the nodule number and the nitrogen fixation capacity of the functional nodules. Although having no influence on NO production in nodules, MtNOA1/RIF1 significantly affected the establishment and the functioning of the symbiotic interaction. The impairment of plastid functioning may explain this phenotype.


Assuntos
Medicago truncatula/enzimologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sinorhizobium meliloti/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Óxido Nítrico Sintase/genética , Fixação de Nitrogênio , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...