Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 212: 111979, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513482

RESUMO

Silicon oxide (SiO2) nanostructures (SiO2NS) are increasingly being incorporated into an array of products, notably in the food, pharmaceutical, medical industries and in water treatment systems. Amorphous SiO2NS have low toxicity, however, due to their great versatility, superficial modifications can be made and these altered structures require toxicological investigation. In this study, SiO2NS were synthetized and amine-functionalized with the molecules (3-aminopropyl)triethoxysilane (APTMS) and 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEAEAPTMS), named SiO2NS@1 and SiO2NS@3, respectively. The bare SiO2NS, SiO2NS@1 and SiO2NS@3 samples were characterized and the influence of the culture medium used in the toxicological assays was also evaluated. The effect of amine functionalization of SiO2NS was investigated through acute and chronic toxicity assays with Daphnia magna. Modifications to ultrastructures of the intestine and eggs of these organisms were observed in TEM and SEM analysis. The toxicity was influenced by the surface modifications and a possible Trojan horse effect was highlighted, particularly in the case of chronic exposure. Exposure to all NSs promoted alterations in the microvilli and mitochondria of the D. magna intestine and some damage to egg cells was also observed. The results demonstrate the importance of carrying out a full characterization of these materials, since surface modifications can enhance their toxic potential.


Assuntos
Daphnia/fisiologia , Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Aminas , Animais , Bioensaio , Daphnia/efeitos dos fármacos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
2.
Chemosphere ; 214: 679-687, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30292050

RESUMO

Amorphous silica (SiO2) nanostructures are described in the literature as having low toxicity and are widely used in many industrial products. However, surface modifications, such as amine-functionalization, can result in increased cytotoxicity. In this study, amorphous SiO2 nanostructures (SiO2 NS) were synthesized and amine-functionalized with two different amine molecules: primary (SiO2 NS@1) and tri-amine (SiO2 NS@3). The materials were characterized by transmission electron microscopy (TEM), zeta potential (ZP), effective diameter (ED) and surface area measurements, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The toxicity of the three SiO2 NS samples toward Vero cells was evaluated. According to the methyl thiazolyl tetrazolium (MTT) assay, the IC50,24h was 1.477 ±â€¯0.12 g L-1 for SiO2 NS, 0.254 ±â€¯0.07 g L-1 for SiO2 NS@1 and 0.117 ±â€¯0.05 g L-1 for SiO2 NS@3. The order of cytotoxicity was SiO2 NS@3 > SiO2 NS@1 ¼ SiO2 NS. There was an increase in malondialdehyde (MDA) levels and ROS productions in the cells exposed to all three materials. Also, TEM images showed damage on the mitochondria and rough endoplasmic reticulum.


Assuntos
Aminas/química , Mitocôndrias/patologia , Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Animais , Bioensaio , Chlorocebus aethiops , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...