Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Plant Sci ; 11(4): e11537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601316

RESUMO

Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.

2.
Heredity (Edinb) ; 130(1): 30-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463371

RESUMO

Glacial cycles play important roles in determining the phylogeographic structure of terrestrial species, however, relatively little is known about their impacts on the distribution of marine biota. This study utilised modern (n = 350) and ancient (n = 26) mitochondrial genomes from Australasian snapper (Chrysophrys auratus) sampled in New Zealand to assess their demographic and phylogeographic history. We also tested for changes in genetic diversity using the up to 750-year-old mitochondrial genomes from pre-European archaeological sites to assess the potential impacts of human exploitation. Nucleotide diversity and haplotype diversity was high (π = 0.005, h = 0.972). There was no significant change in nucleotide diversity over the last 750 years (p = 0.343), with no detectable loss of diversity as a result of indigenous and industrial-scale fishing activity. While there was no evidence for contemporary population structure (AMOVA, p = 0.764), phylogeographic analyses identified two distinct mitochondrial clades that diverged approximately 650,000 years ago during the mid-Pleistocene, suggesting the species experienced barriers to gene flow when sea levels dropped over 120 m during previous glacial maxima. An exponential population increase was also observed around 8000 years ago consistent with a post-glacial expansion, which was likely facilitated by increased ocean temperatures and rising sea levels. This study demonstrates that glacial cycles likely played an important role in the demographic history of C. auratus and adds to our growing understanding of how dynamic climatic changes have influenced the evolution of coastal marine species.


Assuntos
Genoma Mitocondrial , Perciformes , DNA Mitocondrial/genética , Variação Genética , Nucleotídeos , Filogenia , Filogeografia , Perciformes/genética , Animais
3.
Biodivers Data J ; 11: e102317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327316

RESUMO

Intentionally preserved biological material in natural history collections represents a vast repository of biodiversity. Advances in laboratory and sequencing technologies have made these specimens increasingly accessible for genomic analyses, offering a window into the genetic past of species and often permitting access to information that can no longer be sampled in the wild. Due to their age, preparation and storage conditions, DNA retrieved from museum and herbarium specimens is often poor in yield, heavily fragmented and biochemically modified. This not only poses methodological challenges in recovering nucleotide sequences, but also makes such investigations susceptible to environmental and laboratory contamination. In this paper, we review the practical challenges associated with making the recovery of DNA sequence data from museum collections more routine. We first review key operational principles and issues to address, to guide the decision-making process and dialogue between researchers and curators about when and how to sample museum specimens for genomic analyses. We then outline the range of steps that can be taken to reduce the likelihood of contamination including laboratory set-ups, workflows and working practices. We finish by presenting a series of case studies, each focusing on protocol practicalities for the application of different mainstream methodologies to museum specimens including: (i) shotgun sequencing of insect mitogenomes, (ii) whole genome sequencing of insects, (iii) genome skimming to recover plant plastid genomes from herbarium specimens, (iv) target capture of multi-locus nuclear sequences from herbarium specimens, (v) RAD-sequencing of bird specimens and (vi) shotgun sequencing of ancient bovid bone samples.

4.
Proc Biol Sci ; 289(1985): 20221107, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36259206

RESUMO

Understanding the historical emergence and growth of long-range fisheries can provide fundamental insights into the timing of ecological impacts and the development of coastal communities during the last millennium. Whole-genome sequencing approaches can improve such understanding by determining the origin of archaeological fish specimens that may have been obtained from historic trade or distant water. Here, we used genome-wide data to individually infer the biological source of 37 ancient Atlantic cod specimens (ca 1050-1950 CE) from England and Spain. Our findings provide novel genetic evidence that eleventh- to twelfth-century specimens from London were predominantly obtained from nearby populations, while thirteenth- to fourteenth-century specimens were derived from distant sources. Our results further suggest that Icelandic cod was indeed exported to London earlier than previously reported. Our observations confirm the chronology and geography of the trans-Atlantic cod trade from Newfoundland to Spain starting by the early sixteenth century. Our findings demonstrate the utility of whole-genome sequencing and ancient DNA approaches to describe the globalization of marine fisheries and increase our understanding regarding the extent of the North Atlantic fish trade and long-range fisheries in medieval and early modern times.


Assuntos
DNA Antigo , Gadus morhua , Animais , Europa (Continente) , Pesqueiros , Gadus morhua/genética , Caça , Internacionalidade
5.
Mol Ecol ; 31(13): 3548-3565, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35560856

RESUMO

Population bottlenecks can have dramatic consequences for the health and long-term survival of a species. Understanding of historic population size and standing genetic variation prior to a contraction allows estimating the impact of a bottleneck on the species' genetic diversity. Although historic population sizes can be modelled based on extant genomics, uncertainty is high for the last 10-20 millenia. Hence, integrating ancient genomes provides a powerful complement to retrace the evolution of genetic diversity through population fluctuations. Here, we recover 15 high-quality mitogenomes of the once nearly extinct Alpine ibex spanning 8601 BP to 1919 CE and combine these with 60 published modern whole genomes. Coalescent demography simulations based on modern whole genomes indicate population fluctuations coinciding with the last major glaciation period. Using our ancient and historic mitogenomes, we investigate the more recent demographic history of the species and show that mitochondrial haplotype diversity was reduced to a fifth of the prebottleneck diversity with several highly differentiated mitochondrial lineages having coexisted historically. The main collapse of mitochondrial diversity coincides with elevated human population growth during the last 1-2 kya. After recovery, one lineage was spread and nearly fixed across the Alps due to recolonization efforts. Our study highlights that a combined approach integrating genomic data of ancient, historic and extant populations unravels major long-term population fluctuations from the emergence of a species through its near extinction up to the recent past.


Assuntos
Variação Genética , Genoma Mitocondrial , Cabras , Animais , DNA Mitocondrial/genética , Extinção Biológica , Genômica , Cabras/genética , Haplótipos/genética
6.
Biol Lett ; 18(5): 20220021, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506242

RESUMO

Climate change has been implicated in an increased number of distributional shifts of marine species during the last century. Nonetheless, it is unclear whether earlier climatic fluctuations had similar impacts. We use ancient DNA to investigate the long-term spawning distribution of the Northeast Arctic cod (skrei) which performs yearly migrations from the Barents Sea towards spawning grounds along the Norwegian coast. The distribution of these spawning grounds has shifted northwards during the last century, which is thought to be associated with food availability and warming temperatures. We genetically identify skrei specimens from Ruskeneset in west Norway, an archaeological site located south of their current spawning range. Remarkably, 14C analyses date these specimens to the late Holocene, when temperatures were warmer than present-day conditions. Our results either suggest that temperature is not the only driver influencing the spawning distribution of Atlantic cod, or could be indicative of uncertainty in palaeoclimate reconstructions in this region. Regardless, our findings highlight the utility of aDNA to reconstruct the historical distribution of economically important fish populations and reveal the complexity of long-term ecological interactions in the marine environment.


Assuntos
DNA Antigo , Gadus morhua , Animais , Mudança Climática , Peixes , Gadus morhua/genética , Temperatura
7.
Proc Biol Sci ; 289(1972): 20212773, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35382600

RESUMO

Mediaeval walrus hunting in Iceland and Greenland-driven by Western European demand for ivory and walrus hide ropes-has been identified as an important pre-modern example of ecological globalization. By contrast, the main origin of walrus ivory destined for eastern European markets, and then onward trade to Asia, is assumed to have been Arctic Russia. Here, we investigate the geographical origin of nine twelfth-century CE walrus specimens discovered in Kyiv, Ukraine-combining archaeological typology (based on chaîne opératoire assessment), ancient DNA (aDNA) and stable isotope analysis. We show that five of seven specimens tested using aDNA can be genetically assigned to a western Greenland origin. Moreover, six of the Kyiv rostra had been sculpted in a way typical of Greenlandic imports to Western Europe, and seven are tentatively consistent with a Greenland origin based on stable isotope analysis. Our results suggest that demand for the products of Norse Greenland's walrus hunt stretched not only to Western Europe but included Ukraine and, by implication given linked trade routes, also Russia, Byzantium and Asia. These observations illuminate the surprising scale of mediaeval ecological globalization and help explain the pressure this process exerted on distant wildlife populations and those who harvested them.


Assuntos
DNA Antigo , Morsas , Animais , Arqueologia , Geografia , Federação Russa , Morsas/genética
8.
Biotechniques ; 72(2): 60-64, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35037474

RESUMO

Museum specimens and histologically fixed material are valuable samples for the study of historical soft tissues and represent a possible pathogen-specific source for retrospective molecular investigations. However, current methods for molecular analysis are inherently destructive, posing a dilemma between performing a study with the available technology, thus damaging the sample, and conserving the material for future investigations. Here the authors present the first tests of a non-destructive alternative that facilitates genetic analysis of fixed wet tissues while avoiding tissue damage. The authors extracted DNA from the fixed tissues as well as their embedding fixative solution, to quantify the DNA that was transferred to the liquid component. The results show that human historical DNA can be retrieved from the fixative material of medical specimens and provide new options for sampling valuable collections.


Assuntos
DNA , Preservação Biológica , DNA/genética , Fixadores , Humanos , Preservação Biológica/métodos , Estudos Retrospectivos , Análise de Sequência de DNA/métodos
9.
Mol Ecol Resour ; 22(4): 1330-1344, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34779123

RESUMO

Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. Yet, assignment tests often rely on moderate- to high-coverage sequence data that can be difficult to obtain for fields such as molecular ecology and ancient DNA. We have developed a novel approach that efficiently assigns biologically relevant information (i.e., population identity or structural variants such as inversions) in extremely low-coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic single nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low-coverage alignment files are subsequently compared to these databases to ascertain allelic state, yielding a joint probability for each association. To assess the efficacy of this approach, we assigned haplotypes and population identity in Heliconius butterflies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole-genome data. We scored both modern and ancient specimens, including the first whole-genome sequence data recovered from ancient Atlantic herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low-coverage data (as low as 0.0001x) based on genome-wide SNPs. This approach will therefore increase the number of samples in evolutionary, ecological and archaeological research for which relevant biological information can be obtained.


Assuntos
Borboletas , Gadus morhua , Animais , Borboletas/genética , Ecótipo , Gadus morhua/genética , Genoma/genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
10.
J Clin Nurs ; 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34036654

RESUMO

AIMS AND OBJECTIVES: The main objective was to explore the impact of personal protective equipment and social distancing on nurses, caregivers and children's communication and relationship in a maternal and child health hospital. BACKGROUND: The spread of COVID-19 pandemic made it necessary to apply infection prevention and control measures, including interpersonal distancing and the use of personal protective equipment. These measures may impact communication and relationship between nurses, patients and caregivers especially in a complex environment, such as a paediatric setting. DESIGN: A qualitative descriptive study design was adopted. Reporting followed the COREQ guidelines. METHODS: Semi-structured interviews were conducted in two wards of a maternal and child health hospital in north-east Italy. Data were collected between September and November 2020. Transcripts were analysed using inductive content analysis. RESULTS: Seventeen caregivers and 17 nurses were recruited using convenience sampling. Three themes were identified, namely: "Impact on a trustworthy relationship"; "Impact on common communication resources"; and "Strategies to overcome barriers". Participants agreed Covid-19 infection prevention and control measures impacted key elements of family-centred and compassionate care. Communication strategies and play were critical to overcoming the barriers encountered. CONCLUSIONS: COVID-19 containment measures impact communication and family-centred care in paediatric hospital settings. There is a need for stakeholders to consider family needs in interventions aimed at controlling pandemics' impact. CLINICAL RELEVANCE: While COVID-19 pandemic urgency intensified the use of PPE and social distancing, strategies to overcome issues related to family-centred care should be considered in those wards such as oncology or infectious disease paediatric departments where these measures are continuously adopted. Beyond a greater communication awareness, strategies may comprise the implementation of virtual care to guarantee support, continuity of care and information between the child, the healthcare team and the family members that are not admitted to the hospital for safety reasons.

11.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190572, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33012235

RESUMO

Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Assuntos
Evolução Molecular , Genoma Viral , Varíola/história , Vírus da Varíola/genética , Animais , Inglaterra , História do Século XVIII , Humanos , Lactente , Museus , Filogenia
12.
Genes (Basel) ; 9(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200350

RESUMO

The reconstruction of ancient metagenomes from archaeological material, and their implication in human health and evolution, is one of the most recent advances in paleomicrobiological studies. However, as for all ancient DNA (aDNA) studies, environmental and laboratory contamination need to be specifically addressed. Here we attempted to reconstruct the tissue-specific metagenomes of a 42,000-year-old, permafrost-preserved woolly mammoth calf through shotgun high-throughput sequencing. We analyzed the taxonomic composition of all tissue samples together with environmental and non-template experimental controls and compared them to metagenomes obtained from permafrost and elephant fecal samples. Preliminary results suggested the presence of tissue-specific metagenomic signals. We identified bacterial species that were present in only one experimental sample, absent from controls, and consistent with the nature of the samples. However, we failed to further authenticate any of these signals and conclude that, even when experimental samples are distinct from environmental and laboratory controls, this does not necessarily indicate endogenous presence of ancient host-associated microbiomic signals.

13.
PLoS Biol ; 13(7): e1002210, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172158

RESUMO

Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.


Assuntos
Evolução Biológica , Drosophila melanogaster/virologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Drosophila simulans/virologia , Feminino , Masculino , Metagenômica , Dados de Sequência Molecular , RNA/análise , Interferência de RNA , Proteínas Virais/química , Wolbachia/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...