Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1583, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383515

RESUMO

Peripheral T cell lymphomas are typically aggressive with a poor prognosis. Unlike other hematologic malignancies, the lack of target antigens to discriminate healthy from malignant cells limits the efficacy of immunotherapeutic approaches. The T cell receptor expresses one of two highly homologous chains [T cell receptor ß-chain constant (TRBC) domains 1 and 2] in a mutually exclusive manner, making it a promising target. Here we demonstrate specificity redirection by rational design using structure-guided computational biology to generate a TRBC2-specific antibody (KFN), complementing the antibody previously described by our laboratory with unique TRBC1 specificity (Jovi-1) in targeting broader spectrum of T cell malignancies clonally expressing either of the two chains. This permits generation of paired reagents (chimeric antigen receptor-T cells) specific for TRBC1 and TRBC2, with preclinical evidence to support their efficacy in T cell malignancies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunoterapia , Receptores de Antígenos de Linfócitos T
2.
Blood Cancer J ; 14(1): 34, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424120

RESUMO

The diagnosis of leukemic T-cell malignancies is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. Recently developed therapeutic antibodies specific for the mutually exclusive T-cell receptor constant ß chain (TRBC)1 and TRBC2 isoforms provide a unique opportunity to assess for TRBC-restriction as a surrogate of clonality in the flow cytometric analysis of T-cell neoplasms. To demonstrate the diagnostic utility of this approach, we studied 164 clinical specimens with (60) or without (104) T-cell neoplasia, in addition to 39 blood samples from healthy donors. Dual TRBC1 and TRBC2 expression was studied within a comprehensive T-cell panel, in a fashion similar to the routine evaluation of kappa and lambda immunoglobulin light chains for the detection of clonal B-cells. Polytypic TRBC expression was demonstrated on total, CD4+ and CD8+ T-cells from all healthy donors; and by intracellular staining on benign T-cell precursors. All neoplastic T-cells were TRBC-restricted, except for 8 cases (13%) lacking TRBC expression. T-cell clones of uncertain significance were identified in 17 samples without T-cell malignancy (13%) and accounted for smaller subsets than neoplastic clones (median: 4.7 vs. 69% of lymphocytes, p < 0.0001). Single staining for TRBC1 produced spurious TRBC1-dim subsets in 24 clinical specimens (15%), all of which resolved with dual TRBC1/2 staining. Assessment of TRBC restriction by flow cytometry provides a rapid diagnostic method to detect clonal T-cells, and to accurately determine the targetable TRBC isoform expressed by T-cell malignancies.


Assuntos
Linfócitos T CD8-Positivos , Linfoma , Humanos , Citometria de Fluxo/métodos , Linfócitos B/patologia , Coloração e Rotulagem
3.
ACS Chem Biol ; 19(2): 308-324, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38243811

RESUMO

A versatile, safe, and effective small-molecule control system is highly desirable for clinical cell therapy applications. Therefore, we developed a two-component small-molecule control system based on the disruption of protein-protein interactions using minocycline, an FDA-approved antibiotic with wide availability, excellent biodistribution, and low toxicity. The system comprises an anti-minocycline single-domain antibody (sdAb) and a minocycline-displaceable cyclic peptide. Here, we show how this versatile system can be applied to OFF-switch split CAR systems (MinoCAR) and universal CAR adaptors (MinoUniCAR) with reversible, transient, and dose-dependent suppression; to a tunable T cell activation module based on MyD88/CD40 signaling; to a controllable cellular payload secretion system based on IL12 KDEL retention; and as a cell/cell inducible junction. This work represents an important step forward in the development of a remote-controlled system to precisely control the timing, intensity, and safety of therapeutic interventions.


Assuntos
Comunicação Celular , Minociclina , Minociclina/farmacologia , Distribuição Tecidual , Antibacterianos/farmacologia , Transdução de Sinais
5.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37399355

RESUMO

BACKGROUND: We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor. METHODS: The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×106 CARs, and subsequent patients received 75,225,600 and 900×106 CARs in a 3+3 escalation design. RESULTS: The APRIL CAR was well tolerated. Five (45.5%) patients developed Grade 1 cytokine release syndrome and there was no neurotoxicity. However, responses were only observed in 45.5% patients (1×very good partial response, 3×partial response, 1×minimal response). Exploring the mechanistic basis for poor responses, we then compared the APRIL CAR to two other BCMA CARs in a series of in vitro assays, observing reduced interleukin-2 secretion and lack of sustained tumor control by APRIL CAR regardless of transduction method or co-stimulatory domain. There was also impaired interferon signaling of APRIL CAR and no evidence of autoactivation. Thus focusing on APRIL itself, we confirmed similar affinity to BCMA and protein stability in comparison to BCMA CAR binders but reduced binding by cell-expressed APRIL to soluble BCMA and reduced avidity to tumor cells. This indicated either suboptimal folding or stability of membrane-bound APRIL attenuating CAR activation. CONCLUSIONS: The APRIL CAR was well tolerated, but the clinical responses observed in AUTO2 were disappointing. Subsequently, when comparing the APRIL CAR to other BCMA CARs, we observed in vitro functional deficiencies due to reduced target binding by cell-expressed ligand.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/tratamento farmacológico , Ligantes , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/uso terapêutico , Linfócitos T
6.
Front Immunol ; 14: 1119350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334382

RESUMO

SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Linfócitos T , Proteínas de Transporte , Imunidade , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas/metabolismo , Linfócitos T/metabolismo
7.
Mol Ther ; 31(7): 2089-2104, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945773

RESUMO

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3-6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831).


Assuntos
Linfoma de Burkitt , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Recidiva Local de Neoplasia , Imunoterapia Adotiva , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Anticorpos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
8.
Nat Med ; 27(10): 1797-1805, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642489

RESUMO

Chimeric antigen receptor (CAR) T cells targeting CD19 or CD22 have shown remarkable activity in B cell acute lymphoblastic leukemia (B-ALL). The major cause of treatment failure is antigen downregulation or loss. Dual antigen targeting could potentially prevent this, but the clinical safety and efficacy of CAR T cells targeting both CD19 and CD22 remain unclear. We conducted a phase 1 trial in pediatric and young adult patients with relapsed or refractory B-ALL (n = 15) to test AUTO3, autologous transduced T cells expressing both anti-CD19 and anti-CD22 CARs (AMELIA trial, EUDRA CT 2016-004680-39). The primary endpoints were the incidence of grade 3-5 toxicity in the dose-limiting toxicity period and the frequency of dose-limiting toxicities. Secondary endpoints included the rate of morphological remission (complete response or complete response with incomplete bone marrow recovery) with minimal residual disease-negative response, as well as the frequency and severity of adverse events, expansion and persistence of AUTO3, duration of B cell aplasia, and overall and event-free survival. The study endpoints were met. AUTO3 showed a favorable safety profile, with no dose-limiting toxicities or cases of AUTO3-related severe cytokine release syndrome or neurotoxicity reported. At 1 month after treatment the remission rate (that is, complete response or complete response with incomplete bone marrow recovery) was 86% (13 of 15 patients). The 1 year overall and event-free survival rates were 60% and 32%, respectively. Relapses were probably due to limited long-term AUTO3 persistence. Strategies to improve CAR T cell persistence are needed to fully realize the potential of dual targeting CAR T cell therapy in B-ALL.


Assuntos
Antígenos CD19/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos Quiméricos/administração & dosagem , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Adolescente , Adulto , Antígenos CD19/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/tendências , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/tendências , Lactente , Masculino , Pediatria , Intervalo Livre de Progressão , Receptores de Antígenos Quiméricos/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Adulto Jovem
9.
Bio Protoc ; 11(16): e4194, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541054

RESUMO

The use of recombinant lentivirus pseudotyped with the coronavirus Spike protein of SARS-CoV-2 would circumvent the requirement of biosafety-level 3 (BSL-3) containment facilities for the handling of SARS-CoV-2 viruses. Herein, we describe a fast and reliable protocol for the transient production of lentiviruses pseudotyped with SARS-CoV-2 Spike (CoV-2 S) proteins and green fluorescent protein (GFP) reporters. The virus titer is determined by the GFP reporter (fluorescent) expression with a flow cytometer. High titers (>1.00 E+06 infectious units/ml) are produced using codon-optimized CoV-2 S, harbouring the prevalent D614G mutation and lacking its ER retention signal. Enhanced and consistent cell entry is achieved by using permissive HEK293T/17 cells that were genetically engineered to stably express the SARS-CoV-2 human receptor ACE2 along with the cell surface protease TMPRSS2 required for efficient fusion. For the widespread use of this protocol, its reagents have been made publicly available. Graphic abstract: Production and quantification of lentiviral vectors pseudotyped with the SARS-CoV-2 Spike glycoprotein.

10.
Antiviral Res ; 194: 105147, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375715

RESUMO

The SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) was previously engineered into a high affinity tetravalent format (ACE2-Fc-TD) that is a potential decoy protein in SARS-CoV-2 infection.We report that this protein shows greatly enhanced binding to SARS-CoV-2 spike proteins of the SARS-CoV-2 variants of concern B.1.1.7 (alpha variant, originally isolated in the United Kingdom) and B.1.351 (beta variant, originally isolated in South Africa) with picomolar compared with nanomolar Kd values. In addition, ACE2-Fc-TD displays greater neutralization of SARS-CoV-2 pseudotype viruses compared to a dimeric ACE2-Fc, with enhanced activity on variant B.1.351. This tetrameric decoy protein would be a valuable addition to SARS-CoV-2 therapeutic approaches, especially where vaccination cannot be used but also should there be any future coronavirus pandemics.


Assuntos
Enzima de Conversão de Angiotensina 2/farmacologia , Antivirais/metabolismo , COVID-19/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , COVID-19/enzimologia , COVID-19/virologia , Linhagem Celular , Humanos , Cinética , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
11.
J Virol ; 95(19): e0068521, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287040

RESUMO

The human angiotensin-converting enzyme 2 acts as the host cell receptor for SARS-CoV-2 and the other members of the Coronaviridae family SARS-CoV-1 and HCoV-NL63. Here, we report the biophysical properties of the SARS-CoV-2 spike variants D614G, B.1.1.7, B.1.351, and P.1 with affinities to the ACE2 receptor and infectivity capacity, revealing weaknesses in the developed neutralizing antibody approaches. Furthermore, we report a preclinical characterization package for a soluble receptor decoy engineered to be catalytically inactive and immunologically inert, with broad neutralization capacity, that represents an attractive therapeutic alternative in light of the mutational landscape of COVID-19. This construct efficiently neutralized four SARS-CoV-2 variants of concern. The decoy also displays antibody-like biophysical properties and manufacturability, strengthening its suitability as a first-line treatment option in prophylaxis or therapeutic regimens for COVID-19 and related viral infections. IMPORTANCE Mutational drift of SARS-CoV-2 risks rendering both therapeutics and vaccines less effective. Receptor decoy strategies utilizing soluble human ACE2 may overcome the risk of viral mutational escape since mutations disrupting viral interaction with the ACE2 decoy will by necessity decrease virulence, thereby preventing meaningful escape. The solution described here of a soluble ACE2 receptor decoy is significant for the following reasons: while previous ACE2-based therapeutics have been described, ours has novel features, including (i) mutations within ACE2 to remove catalytical activity and systemic interference with the renin/angiotensin system, (ii) abrogated FcγR engagement, reduced risk of antibody-dependent enhancement of infection, and reduced risk of hyperinflammation, and (iii) streamlined antibody-like purification process and scale-up manufacturability indicating that this receptor decoy could be produced quickly and easily at scale. Finally, we demonstrate that ACE2-based therapeutics confer a broad-spectrum neutralization potency for ACE2-tropic viruses, including SARS-CoV-2 variants of concern in contrast to therapeutic MAb.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Facilitadores , COVID-19/imunologia , Células HEK293 , Humanos , Cinética , Mutação , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Front Immunol ; 12: 640070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679801

RESUMO

Biologic drugs, especially anti-TNF, are considered as the gold standard therapy in rheumatoid arthritis. However, non-uniform efficacy, incidence of infections, and high costs are major concerns. Novel tissue-specific agents may overcome the current limitations of systemic administration, providing improved potency, and safety. We developed a bispecific antibody (BsAb), combining human arthritic joint targeting, via the synovial-specific single-chain variable fragment (scFv)-A7 antibody, and TNFα neutralization, via the scFv-anti-TNFα of adalimumab, with the binding/blocking capacity comparable to adalimumab -immunoglobulin G (IgG). Tissue-targeting capacity of the BsAb was confirmed on the human arthritic synovium in vitro and in a synovium xenograft Severe combined immune deficient (SCID) mouse model. Peak graft accumulation occurred at 48 h after injection with sustained levels over adalimumab-IgG for 7 days and increased therapeutic effect, efficiently decreasing tissue cellularity, and markers of inflammation with higher potency compared to the standard treatment. This study provides the first description of a BsAb capable of drug delivery, specifically to the disease tissue, and a strong evidence of improved therapeutic effect on the human arthritic synovium, with applications to other existing biologics.


Assuntos
Anticorpos Biespecíficos/imunologia , Artrite Reumatoide/imunologia , Membrana Sinovial/imunologia , Inibidores do Fator de Necrose Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adalimumab/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoterapia/métodos , Inflamação/imunologia , Masculino , Camundongos , Camundongos SCID , Anticorpos de Cadeia Única/imunologia
13.
MAbs ; 13(1): 1864084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382949

RESUMO

Phage display technology in combination with next-generation sequencing (NGS) currently is a state-of-the-art method for the enrichment and isolation of monoclonal antibodies from diverse libraries. However, the current NGS methods employed for sequencing phage display libraries are limited by the short contiguous read lengths associated with second-generation sequencing platforms. Consequently, the identification of antibody sequences has conventionally been restricted to individual antibody domains or to the analysis of single domain binding moieties such as camelid VHH or cartilaginous fish IgNAR antibodies. In this study, we report the application of third-generation sequencing to address this limitation. We used single molecule real time (SMRT) sequencing coupled with hairpin adaptor loop ligation to facilitate the accurate interrogation of full-length single-chain Fv (scFv) libraries. Our method facilitated the rapid isolation and testing of scFv antibodies enriched from phage display libraries within days following panning. Two libraries against CD160 and CD123 were panned and monitored by NGS. Analysis of NGS antibody data sets led to the isolation of several functional scFv antibodies that were not identified by conventional panning and screening strategies. Our approach, which combines phage display selection of immune libraries with the full-length interrogation of scFv fragments, is an easy method to discover functional antibodies, with a range of affinities and biophysical characteristics.


Assuntos
Anticorpos Monoclonais/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/isolamento & purificação , Antígenos CD/imunologia , Teorema de Bayes , Proteínas Ligadas por GPI/imunologia , Células HEK293 , Humanos , Subunidade alfa de Receptor de Interleucina-3/imunologia , Ratos Wistar , Receptores Imunológicos/imunologia
14.
Sci Rep ; 10(1): 19168, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154441

RESUMO

Antibody phage display is a powerful platform for discovery of clinically applicable high affinity monoclonal antibodies against a broad range of targets. Libraries generated from immunized animals offer the advantage of in vivo affinity-maturation of V regions prior to library generation. Despite advantages, few studies have described isolation of antibodies from rats using immune phage display. In our study, we describe a novel primer set, covering the full rat heavy chain variable and kappa light chain variable regions repertoire for the generation of an unbiased immune libraries. Since the immune repertoire of rats is poorly understood, we first performed a deep sequencing analysis of the V(D)J regions of VH and VLK genes, demonstrating the high abundance of IGVH2 and IGVH5 families for VH and IGVLK12 and IGVLK22 for VLK. The comparison of gene's family usage in naïve rats have been used to validate the frequency's distribution of the primer set, confirming the absence of PCR-based biases. The primers were used to generate and assemble a phage display library from human CD160-vaccinated rats. CD160 represents a valid therapeutic target as it has been shown to be expressed on chronic lymphocytic leukaemia cells and on the surface of newly formed vessels. We utilised a novel phage display panning strategy to isolate a high affinity pool (KD range: 0.399-233 nM) of CD160 targeting monoclonal antibodies. Subsequently, identified binders were tested for function as third generation Chimeric Antigen Receptors (CAR) T cells demonstrating specific cytolytic activity. Our novel primer set coupled with a streamlined strategy for phage display panning enable the rapid isolation and identification of high affinity antibodies from immunised rats. The therapeutic utility of these antibodies was demonstrated in CAR format.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Superfície/isolamento & purificação , Imunização , Anticorpos de Cadeia Única/imunologia , Animais , Técnicas de Visualização da Superfície Celular , Ratos
15.
Nat Med ; 25(9): 1408-1414, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477906

RESUMO

Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL)1-5, but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40-60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19- clones. Some factors, including the choice of single-chain spacer6 and extracellular7 and costimulatory domains8, have a profound effect on CAR T cell function and persistence. However, little is known about the impact of CAR binding affinity. There is evidence of a ceiling above which increased immunoreceptor affinity may adversely affect T cell responses9-11. We generated a novel CD19 CAR (CAT) with a lower affinity than FMC63, the high-affinity binder used in many clinical studies1-4. CAT CAR T cells showed increased proliferation and cytotoxicity in vitro and had enhanced proliferative and in vivo antitumor activity compared with FMC63 CAR T cells. In a clinical study (CARPALL, NCT02443831 ), 12/14 patients with relapsed/refractory pediatric B cell acute lymphoblastic leukemia treated with CAT CAR T cells achieved molecular remission. Persistence was demonstrated in 11 of 14 patients at last follow-up, with enhanced CAR T cell expansion compared with published data. Toxicity was low, with no severe CRS. One-year overall and event-free survival were 63% and 46%, respectively.


Assuntos
Antígenos CD19/administração & dosagem , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/imunologia , Adolescente , Antígenos CD19/genética , Antígenos CD19/imunologia , Criança , Pré-Escolar , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Recidiva , Linfócitos T/patologia , Sequenciamento do Exoma , Adulto Jovem
16.
Drug Discov Today ; 21(1): 172-179, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26523772

RESUMO

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease that leads to excessive joint inflammation and is associated with significant morbidity and mortality. Although much is still to be learned about the aetiology RA, a growing body of evidence suggests that an altered vascular environment is an important aspect of its pathophysiology. In this context, RA shares many similarities with cancer, and it is expected that several angiogenic targets in cancer might be relevant to the treatment of RA. Here, we discuss how these targets can be combined with advances in drug development to generate the next generation of RA therapeutics.


Assuntos
Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Neovascularização Patológica/tratamento farmacológico , Animais , Descoberta de Drogas/métodos , Humanos , Terapia de Alvo Molecular/métodos , Neovascularização Patológica/patologia
17.
Arthritis Rheumatol ; 67(10): 2661-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26097196

RESUMO

OBJECTIVE: Biologic drugs, such as the anti-tumor necrosis factor (anti-TNF) antibody adalimumab, have represented a breakthrough in the treatment of rheumatoid arthritis. Yet, concerns remain over their lack of efficacy in a sizable proportion of patients and their potential for systemic side effects such as infection. Improved biologic prodrugs specifically targeted to the site of inflammation have the potential to alleviate current concerns surrounding biologic anticytokine therapies. The purpose of this study was to design, construct, and evaluate in vitro and ex vivo the targeting and antiinflammatory capacity of activatable bispecific antibodies. METHODS: Activatable dual variable domain (aDVD) antibodies were designed and constructed to target intercellular adhesion molecule 1 (ICAM-1), which is up-regulated at sites of inflammation, and anti-TNF antibodies (adalimumab and infliximab). These bispecific molecules included an external arm that targets ICAM-1 and an internal arm that comprises the therapeutic domain of an anti-TNF antibody. Both arms were linked to matrix metalloproteinase (MMP)-cleavable linkers. The constructs were tested for their ability to bind and neutralize both in vitro and ex vivo targets. RESULTS: Intact aDVD constructs demonstrated significantly reduced binding and anti-TNF activity in the prodrug formulation as compared to the parent antibodies. Human synovial fluid and physiologic concentrations of MMP enzyme were capable of cleaving the external domain of the antibody, revealing a fully active molecule. Activated antibodies retained the same binding and anti-TNF inhibitory capacities as the parent molecules. CONCLUSION: The design of a biologic prodrug with enhanced specificity for sites of inflammation (synovium) and reduced specificity for off-target TNF is described. This construct has the potential to form a platform technology that is capable of enhancing the therapeutic index of drugs for the treatment of RA and other inflammatory diseases.


Assuntos
Antirreumáticos/uso terapêutico , Descoberta de Drogas , Inflamação/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Projetos de Pesquisa , Adalimumab/química , Adalimumab/farmacologia , Adalimumab/uso terapêutico , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antirreumáticos/química , Antirreumáticos/farmacologia , Humanos , Inflamação/metabolismo , Infliximab/química , Infliximab/farmacologia , Infliximab/uso terapêutico , Molécula 1 de Adesão Intercelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo
18.
Nat Rev Rheumatol ; 11(6): 328-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25734971

RESUMO

Despite major advances in the treatment of rheumatoid arthritis (RA) led by the success of biologic therapies, the lack of response to therapy in a proportion of patients, as well as therapy discontinuation owing to systemic toxicity, are still unsolved issues. Unchecked RA might develop into progressive structural joint damage, loss of function and long-term disability, disorders which are associated with a considerable health-economic burden. Therefore, new strategies are required to actively target and deliver therapeutic agents to disease sites in order to promote in situ activity and decrease systemic toxicity. Polymer-drug conjugates can improve the pharmacokinetics of therapeutic agents, conferring desirable properties such as increased solubility and tissue penetration at sites of active disease. Additionally, nanotechnology is an exciting modality in which drugs are encapsulated to protect them from degradation or early activation in the circulation, as well as to reduce systemic toxicity. Together with the targeting capacity of antibodies and site-specific peptides, these approaches will facilitate selective accumulation of therapeutic agents in the inflamed synovium, potentially improving drug efficacy at disease sites without affecting healthy tissues. This Review aims to summarize key developments in the past 5 years in polymer conjugation, nanoparticulate drug delivery and antibody or peptide-based targeting--strategies that might constitute the platform for the next generation of RA therapeutics.


Assuntos
Antirreumáticos/administração & dosagem , Antirreumáticos/farmacocinética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Animais , Artrite Reumatoide/economia , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular , Nanoestruturas/administração & dosagem , Polímeros/administração & dosagem , Polímeros/farmacocinética
19.
Mol Cell Biol ; 34(6): 1054-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24396068

RESUMO

IκB kinase ε (IKK-ε) has an essential role as a regulator of innate immunity, functioning downstream of pattern recognition receptors to modulate NF-κB and interferon (IFN) signaling. In the present study, we investigated IKK-ε activation following T cell receptor (TCR)/CD28 stimulation of primary CD4(+) T cells and its role in the stimulation of a type I IFN response. IKK-ε was activated following TCR/CD28 stimulation of primary CD4(+) T cells; however, in T cells treated with poly(I·C), TCR/CD28 costimulation blocked induction of IFN-ß transcription. We demonstrated that IKK-ε phosphorylated the transcription factor IFN regulatory factor 1 (IRF-1) at amino acid (aa) 215/219/221 in primary CD4(+) T cells and blocked its transcriptional activity. At the mechanistic level, IRF-1 phosphorylation impaired the physical interaction between IRF-1 and the NF-κB RelA subunit and interfered with PCAF-mediated acetylation of NF-κB RelA. These results demonstrate that TCR/CD28 stimulation of primary T cells stimulates IKK-ε activation, which in turn contributes to suppression of IFN-ß production.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Quinase I-kappa B/genética , Fator Regulador 1 de Interferon/genética , Ativação Linfocitária/genética , Acetilação , Antígenos CD28/genética , Antígenos CD28/metabolismo , Complexo CD3/genética , Complexo CD3/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Quinase I-kappa B/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Processamento de Proteína Pós-Traducional/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/genética , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
20.
Arthritis Rheum ; 63(12): 3758-67, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21953304

RESUMO

OBJECTIVE: To isolate recombinant antibodies with specificity for human arthritic synovium and to develop targeting reagents with joint-specific delivery capacity for therapeutic and/or diagnostic applications. METHODS: In vivo single-chain Fv (scFv) antibody phage display screening using a human synovial xenograft model was used to isolate antibodies specific to the microvasculature of human arthritic synovium. Single-chain Fv antibody tissue-specific reactivity was assessed by immunostaining of synovial tissues from normal controls and from patients with rheumatoid arthritis and osteoarthritis, normal human tissue arrays, and tissues from other patients with inflammatory diseases displaying neovasculogenesis. In vivo scFv antibody tissue-specific targeting capacity was examined in the human synovial xenograft model using both (125)I-labeled and biotinylated antibody. RESULTS: We isolated a novel recombinant human antibody, scFv A7, with specificity for the microvasculature of human arthritic synovium. We showed that in vivo, this antibody could efficiently target human synovial microvasculature in SCID mice transplanted with human arthritic synovial xenografts. Our results demonstrated that scFv A7 antibody had no reactivity with the microvasculature or with other cellular components found in a comprehensive range of normal human tissues including normal human synovium. Further, we showed that the reactivity of the scFv A7 antibody was not a common feature of neovasculogenesis associated with chronic inflammatory conditions. CONCLUSION: Here we report for the first time the identification of an scFv antibody, A7, that specifically recognizes an epitope expressed in the microvasculature of human arthritic synovium and that has the potential to be developed as a joint-specific pharmaceutical.


Assuntos
Especificidade de Anticorpos/imunologia , Artrite Reumatoide/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Anticorpos de Cadeia Única/uso terapêutico , Animais , Artrite Reumatoide/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Humanos , Camundongos , Camundongos SCID , Microvasos , Osteoartrite/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Anticorpos de Cadeia Única/imunologia , Membrana Sinovial/irrigação sanguínea , Membrana Sinovial/imunologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...