Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3824, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846873

RESUMO

The Nitrogen Use Efficiency (NUE) of grain cereals depends on nitrate (NO3-) uptake from the soil, translocation to the aerial parts, nitrogen (N) assimilation and remobilization to the grains. Brachypodium distachyon has been proposed as a model species to identify the molecular players and mechanisms that affects these processes, for the improvement of temperate C3 cereals. We report on the developmental, physiological and grain-characteristic responses of the Bd21-3 accession of Brachypodium to variations in NO3- availability. As previously described in wheat and barley, we show that vegetative growth, shoot/root ratio, tiller formation, spike development, tissue NO3- and N contents, grain number per plant, grain yield and grain N content are sensitive to pre- and/or post-anthesis NO3- supply. We subsequently described constitutive and NO3--inducible components of both High and Low Affinity Transport Systems (HATS and LATS) for root NO3- uptake, and BdNRT2/3 candidate genes potentially involved in the HATS. Taken together, our data validate Brachypodium Bd21-3 as a model to decipher cereal N nutrition. Apparent specificities such as high grain N content, strong post-anthesis NO3- uptake and efficient constitutive HATS, further identify Brachypodium as a direct source of knowledge for crop improvement.


Assuntos
Brachypodium/fisiologia , Nitrogênio/análise , Solo/química , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Proteínas de Plantas/genética
2.
Planta ; 213(2): 265-71, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11469592

RESUMO

Transformed tobacco (Nicotiana tabacum L.) plants with varying activities of the key enzyme of ammonia assimilation, ferredoxin-glutamine-alpha-ketoglutarate aminotransferase (Fd-GOGAT; EC 1.4.7.1), were used to examine the roles of ammonium, glutamine (Gln) and alpha-ketoglutarate (alpha-KG) in the regulation of nitrate reductase (NR; EC 1.6.6.1) transcript abundance. In wild-type leaf discs, NR mRNA abundance was increased following feeding with NO3-, sucrose and alpha-KG and decreased by feeding Gln. In air, leaves with decreased GOGAT accumulated Gln and alpha-KG simultaneously; this was accompanied by increased NR transcripts. The inhibition of NR transcription by Gln observed in leaf-disc experiments was therefore not observed in the low-Fd-GOGAT plants that accumulate Gln in vivo. The results suggest that the negative effect of Gln on NR transcript abundance was offset by high alpha-KG and that the relative amounts of alpha-KG and Gln are more important in controlling NR gene transcription than the concentration of either metabolite alone.


Assuntos
Aminoácido Oxirredutases/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Nicotiana/genética , Nitrato Redutases/genética , Técnicas In Vitro , Nitrato Redutase , Nitrato Redutases/metabolismo , Nitratos/farmacologia , Consumo de Oxigênio , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Compostos de Amônio Quaternário/metabolismo , RNA Mensageiro , RNA de Plantas , Transdução de Sinais , Sacarose/farmacologia , Nicotiana/metabolismo , Transcrição Gênica
3.
J Exp Bot ; 51(349): 1349-56, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10944147

RESUMO

Untransformed maize and tobacco plants and tobacco plants constitutively expressing nitrate reductase were grown with sufficient NO(3)- to support maximal growth. Four days prior to treatment the tobacco plants were deprived of nitrogen. Excised maize leaves and tobacco leaf discs were fed with either 40 mM KNO(3) or 40 mM KCl (control) in the light. Phosphoenolpyruvate (PEP) carboxylase (Case) activity was measured at 0.3 mM and 3 mM PEP. The light- induced increase in PEPCase V(max) was greater in maize than tobacco. Furthermore light decreased malate sensitivity in maize (which was N-replete) but not in N-deficient tobacco. NO(3)- treatment increased PEPCase V:(max) values in both species and decreased the sensitivity to inhibition by malate, but effects of NO(3)- were much more pronounced in tobacco than maize. PEPCase kinase activity was, however, greater in maize leaves NO(3)- than in the Cl(-)-treated controls, suggesting that it is responsive to leaf nitrogen supply. A correlation between foliar glutamine content and PEPCase activity was observed. It is concluded that PEPCase is sensitive to N metabolites which favour increased flow through the anapleurotic pathway in both C(3) and C(4) plants.


Assuntos
Nicotiana/enzimologia , Nitrogênio/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/enzimologia , Plantas Tóxicas , Zea mays/enzimologia , Nitratos/metabolismo , Fosforilação
4.
Plant Physiol ; 117(1): 293-302, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9576799

RESUMO

Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3- decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...