Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 9(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696063

RESUMO

BACKGROUND: Parkinson's disease is a neurodegenerative disorder that is characterized by a degeneration of the dopaminergic system. Dopamine transporter (DAT) positron emission tomography (PET) imaging has emerged as a powerful and non-invasive method to quantify dopaminergic function in the living brain. The PET radioligand, [18F]FE-PE2I, a cocaine chemical derivative, has shown promising properties for in vivo PET imaging of DAT, including high affinity and selectivity for DAT, excellent brain permeability, and favorable metabolism. The aim of the current study was to scale up the production of [18F]FE-PE2I to fulfil the increasing clinical demand for this tracer. RESULTS: Thus, a fully automated and GMP-compliant production procedure has been developed using a commercially available radiosynthesis module GE TRACERLab FX2 N. [18F]FE-PE2I was produced with a radiochemical yield of 39 ± 8% (n = 4, relative [18F]F- delivered to the module). The synthesis time was 70 min, and the molar activity was 925.3 ± 763 GBq/µmol (250 ± 20 Ci/µmol). The produced [18F]FE-PE2I was stable over 6 h at room temperature. CONCLUSION: The protocol reliably provides a sterile and pyrogen-free GMP-compliant product.

2.
EJNMMI Radiopharm Chem ; 8(1): 41, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991639

RESUMO

BACKGROUND: The Affibody molecule, ABY-025, has demonstrated utility to detect human epidermal growth factor receptor 2 (HER2) in vivo, either radiolabelled with indium-111 (111In) or gallium-68 (68Ga). Using the latter, 68Ga, is preferred due to its use in positron emission tomography with superior resolution and quantifying capabilities in the clinical setting compared to 111In. For an ongoing phase II study (NCT05619016) evaluating ABY-025 for detecting HER2-low lesions and selection of patients for HER2-targeted treatment, the aim was to optimize an automated and cGMP-compliant radiosynthesis of [68Ga]Ga-ABY-025. [68Ga]Ga-ABY-025 was produced on a synthesis module, Modular-Lab PharmTracer (Eckert & Ziegler), commonly used for 68Ga-labelings. The radiotracer has previously been radiolabeled on this module, but to streamline the production, the method was optimized. Steps requiring manual interactions to the radiolabeling procedure were minimized including a convenient and automated pre-concentration of the 68Ga-eluate and a simplified automated final formulation procedure. Every part of the radiopharmaceutical production was carefully developed to gain robustness and to avoid any operator bound variations to the manufacturing. The optimized production method was successfully applied for 68Ga-labeling of another radiotracer, verifying its versatility as a universal and robust method for radiosynthesis of Affibody-based peptides. RESULTS: A simplified and optimized automated cGMP-compliant radiosynthesis method of [68Ga]Ga-ABY-025 was developed. With a decay corrected radiochemical yield of 44 ± 2%, a radiochemical purity (RCP) of 98 ± 1%, and with an RCP stability of 98 ± 1% at 2 h after production, the method was found highly reproducible. The production method also showed comparable results when implemented for radiolabeling another similar peptide. CONCLUSION: The improvements made for the radiosynthesis of [68Ga]Ga-ABY-025, including introducing a pre-concentration of the 68Ga-eluate, aimed to utilize the full potential of the 68Ge/68Ga generator radioactivity output, thereby reducing radioactivity wastage. Furthermore, reducing the number of manually performed preparative steps prior to the radiosynthesis, not only minimized the risk of potential human/operator errors but also enhanced the process' robustness. The successful application of this optimized radiosynthesis method to another similar peptide underscores its versatility, suggesting that our method can be adopted for 68Ga-labeling radiotracers based on Affibody molecules in general. TRIAL REGISTRATION: NCT, NCT05619016, Registered 7 November 2022, https://clinicaltrials.gov/study/NCT05619016?term=HER2&cond=ABY025&rank=1.

3.
Chemistry ; 27(34): 8689-8693, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33885193

RESUMO

Electrophilic 11 C-labelled aroyl dimethylaminopyridinium salts, obtained by carbonylative cross-coupling of aryl halides with [11 C]carbon monoxide, were prepared for the first time and shown to be valuable intermediates in the synthesis of primary [11 C]benzamides. The methodology furnished a set of benzamide model compounds, including the two poly (ADP-ribose) polymerase (PARP) inhibitors niraparib and veliparib, in moderate to excellent radiochemical yields. In addition to providing a convenient and practical route to primary [11 C]benzamides, the current method paves the way for future application of [11 C]aroyl dimethylaminopyridinium halide salts in positron emission tomography (PET) tracer synthesis.


Assuntos
Benzamidas , Sais , Monóxido de Carbono , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
4.
J Labelled Comp Radiopharm ; 63(12): 517-522, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32588452

RESUMO

[11 C]carbon monoxide ([11 C]CO) is a versatile synthon for radiolabeling of drug-like molecules for imaging studies with positron emission tomography (PET). We here report the development of a novel, user-friendly, fully automated, and good manufacturing practice (GMP) compliant low-pressure synthesis module for 11 C-carbonylation reactions using [11 C]CO. In this synthesis module, [11 C]CO was reliably prepared from cyclotron-produced [11 C]carbon dioxide ([11 C]CO2 ) by reduction over heated molybdenum and delivered to the reaction vessel within 7 min after end of bombardment, with an overall radiochemical yield (RCY) of 71%. [11 C]AZ13198083, a histamine type-3 receptor ligand, was used as a model compound to assess the functionality of the radiochemistry module. At full batch production conditions (55 µA, 30 min), our newly developed low-pressure 11 C-carbonylation apparatus enabled us to prepare [11 C]AZ13198083 in an isolated radioactivity of 8540 ± 1400 MBq (n = 3). The radiochemical purity of each of the final formulated batches exceeded 99%, and all other quality control tests results conformed with specifications typically set for carbon-11 labeled radiopharmaceuticals. In conclusion, this novel radiochemistry system offers a convenient GMP compliant production drugs and radioligands for imaging studies in human subjects.


Assuntos
Monóxido de Carbono/química , Radioisótopos de Carbono/química , Pressão , Radioquímica/instrumentação , Automação
5.
J Labelled Comp Radiopharm ; 63(3): 100-107, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31524295

RESUMO

Transition-metal mediated carbonylation with 11 C-labelled carbon monoxide ([11 C]CO) is a versatile method for introducing 11 C (t1/2 = 20.3 min) into drugs and radioligands for subsequent use in positron emission tomography (PET). The aim of the current study was to perform the 11 C-carbonylation reaction on the interior surface of a stainless-steel loop used for high performance liquid chromatography (HPLC). In the experimental setup, cyclotron produced 11 C-labelled carbon dioxide ([11 C]CO2 ) was converted to [11 C]CO by reduction over heated Molybdenum and swept into an HPLC loop pre-charged with the appropriate reaction mixture. Following a 5 min reaction, the radiochemical purity (RCP) and the trapping efficiency (TE) of the reaction mixture was determined. After optimization, [11 C]N-Benzylbenzamide was obtained in quantitative radiochemical yield (RCY) following a 5 min reaction at room temperature. The methodology was further applied to label [11 C]benzoic acid (RCP≥99%, TE>91%), [11 C]methyl benzoate (RCP≥99%, TE>93%) and [11 C]phthalide (RCP≥99%, TE>88%). A set of pharmaceuticals was finally radiolabelled using non-optimized conditions. Excellent yields were obtained for the histamine-3 receptor radioligand [11 C]AZ13198083, the oncology drug [11 C]olaparib and the dopamine D2 receptor radioligand [11 C]raclopride, whereas a moderate yield was observed for the high-affinity dopamine D2 receptor radioligand [11 C]FLB457. The presented "in-loop" process proved efficient for diverse 11 C-carbonylations, providing [11 C]amides, [11 C]esters and [11 C]carboxylic acids in moderate to excellent RCYs. Based on the advantages associated with performing the radiolabelling step as an integrated part of the purification system, this methodology may become a valuable addition to the toolbox of methodologies used for 11 C-carbonylation of drugs and radioligands for PET.


Assuntos
Monóxido de Carbono/química , Radioisótopos de Carbono/química , Marcação por Isótopo/métodos , Amidas/química , Ligantes , Radioquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...