Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 3(1): vbad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250111

RESUMO

Motivation: The application of machine learning (ML) techniques in the medical field has demonstrated both successes and challenges in the precision medicine era. The ability to accurately classify a subject as a potential responder versus a nonresponder to a given therapy is still an active area of research pushing the field to create new approaches for applying machine-learning techniques. In this study, we leveraged publicly available data through the BeatAML initiative. Specifically, we used gene count data, generated via RNA-seq, from 451 individuals matched with ex vivo data generated from treatment with RTK-type-III inhibitors. Three feature selection techniques were tested, principal component analysis, Shapley Additive Explanation (SHAP) technique and differential gene expression analysis, with three different classifiers, XGBoost, LightGBM and random forest (RF). Sensitivity versus specificity was analyzed using the area under the curve (AUC)-receiver operating curves (ROCs) for every model developed. Results: Our work demonstrated that feature selection technique, rather than the classifier, had the greatest impact on model performance. The SHAP technique outperformed the other feature selection techniques and was able to with high accuracy predict outcome response, with the highest performing model: Foretinib with 89% AUC using the SHAP technique and RF classifier. Our ML pipelines demonstrate that at the time of diagnosis, a transcriptomics signature exists that can potentially predict response to treatment, demonstrating the potential of using ML applications in precision medicine efforts. Availability and implementation: https://github.com/UD-CRPL/RCDML. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

2.
PLoS Comput Biol ; 16(5): e1007877, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32401799

RESUMO

Experimental chemical shifts (CS) from solution and solid state magic-angle-spinning nuclear magnetic resonance (NMR) spectra provide atomic level information for each amino acid within a protein or protein complex. However, structure determination of large complexes and assemblies based on NMR data alone remains challenging due to the complexity of the calculations. Here, we present a hardware accelerated strategy for the estimation of NMR chemical-shifts of large macromolecular complexes based on the previously published PPM_One software. The original code was not viable for computing large complexes, with our largest dataset taking approximately 14 hours to complete. Our results show that serial code refactoring and parallel acceleration brought down the time taken of the software running on an NVIDIA Volta 100 (V100) Graphic Processing Unit (GPU) to 46.71 seconds for our largest dataset of 11.3 million atoms. We use OpenACC, a directive-based programming model for porting the application to a heterogeneous system consisting of x86 processors and NVIDIA GPUs. Finally, we demonstrate the feasibility of our approach in systems of increasing complexity ranging from 100K to 11.3M atoms.


Assuntos
Biologia Computacional , Conformação Proteica , Conjuntos de Dados como Assunto , Ligação de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...