Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37508098

RESUMO

The prenatal environment is recognized as crucial for the postnatal performance in cattle. In tropical regions, pregnant beef cows commonly experience nutritional restriction during the second half of the gestation period. Thus, the present study was designed to analyze the genotype by prenatal environment interaction (G × Epn) and to identify genomic regions associated with the level and response in growth and reproduction-related traits of beef cattle to changes in the prenatal environment. A reaction norm model was applied to data from two Nelore herds using the solutions of contemporary groups for birth weight as a descriptor variable of the gestational environment quality. A better gestational environment favored weights until weaning, scrotal circumference at yearling, and days to first calving of the offspring. The G × Epn was strong enough to result in heterogeneity of variance components and genetic parameters in addition to reranking of estimated breeding values and SNPs effects. Several genomic regions associated with the level of performance and specific responses of the animals to variations in the gestational environment were revealed, which harbor QTLs and can be exploited for selection purposes. Therefore, genetic evaluation models considering G × Epn and special management and nutrition care for pregnant cows are recommended.

2.
BMC Genomics ; 23(1): 774, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434498

RESUMO

BACKGROUND: Potential functional variants (PFVs) can be defined as genetic variants responsible for a given phenotype. Ultimately, these are the best DNA markers for animal breeding and selection, especially for polygenic and complex phenotypes. Herein, we described the identification of PFVs for complex phenotypes (in this case, Feed Efficiency in beef cattle) using a systems-biology driven approach based on RNA-seq data from physiologically relevant organs. RESULTS: The systems-biology coupled with deep molecular phenotyping by RNA-seq of liver, muscle, hypothalamus, pituitary, and adrenal glands of animals with high and low feed efficiency (FE) measured by residual feed intake (RFI) identified 2,000,936 uniquely variants. Among them, 9986 variants were significantly associated with FE and only 78 had a high impact on protein expression and were considered as PFVs. A set of 169 significant uniquely variants were expressed in all five organs, however, only 27 variants had a moderate impact and none of them a had high impact on protein expression. These results provide evidence of tissue-specific effects of high-impact PFVs. The PFVs were enriched (FDR < 0.05) for processing and presentation of MHC Class I and II mediated antigens, which are an important part of the adaptive immune response. The experimental validation of these PFVs was demonstrated by the increased prediction accuracy for RFI using the weighted G matrix (ssGBLUP+wG; Acc = 0.10 and b = 0.48) obtained in the ssGWAS in comparison to the unweighted G matrix (ssGBLUP; Acc = 0.29 and b = 1.10). CONCLUSION: Here we identified PFVs for FE in beef cattle using a strategy based on systems-biology and deep molecular phenotyping. This approach has great potential to be used in genetic prediction programs, especially for polygenic phenotypes.


Assuntos
Ração Animal , Ingestão de Alimentos , Animais , Bovinos/genética , Ingestão de Alimentos/genética , Biologia de Sistemas , Marcadores Genéticos , Fenótipo
3.
Front Genet ; 11: 123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180796

RESUMO

The Montana Tropical® Composite is a recently developed beef cattle population that is rapidly expanding in Brazil and other tropical countries. This is mainly due to its improved meat quality and adaptation to tropical climate conditions compared to Zebu and Taurine cattle breeds, respectively. This study aimed to investigate the genetic architecture of ultrasound-based carcass and meat quality traits in Montana Tropical® Composite beef cattle. Therefore, we estimated variance components and genetic parameters and performed genome-wide association studies using the weighted single-step Genomic Best Linear Unbiased Prediction (GBLUP) approach. A pedigree dataset containing 28,480 animals was used, in which 1,436 were genotyped using a moderate-density Single Nucleotide Polymorphism panel (30K; 30,105 SNPs). A total of 9,358, 5,768, 7,996, and 1,972 phenotypic records for the traits Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT), and for marbling score (MARB), respectively, were used for the analyses. Moderate to high heritability estimates were obtained and ranged from 0.16 ± 0.03 (RFT) to 0.33 ± 0.05 (MARB). A high genetic correlation was observed between BFT and RFT (0.97 ± 0.02), suggesting that a similar set of genes affects both traits. The most relevant genomic regions associated with LMA, BFT, RFT, and MARB were found on BTA10 (5.4-5.8 Mb), BTA27 (25.2-25.5 Mb), BTA18 (60.6-61.0 Mb), and BTA21 (14.8-15.4 Mb). Two overlapping genomic regions were identified for RFT and MARB (BTA13:47.9-48.1 Mb) and for BFT and RFT (BTA13:61.5-62.3 Mb). Candidate genes identified in this study, including PLAG1, LYN, WWOX, and PLAGL2, were previously reported to be associated with growth, stature, skeletal muscle growth, fat thickness, and fatty acid composition. Our results indicate that ultrasound-based carcass and meat quality traits in the Montana Tropical® Composite beef cattle are heritable, and therefore, can be improved through selective breeding. In addition, various novel and already known genomic regions related to these traits were identified, which contribute to a better understanding of the underlying genetic background of LMA, BFT, RFT, and MARB in the Montana Tropical Composite population.

4.
J Anim Breed Genet ; 136(6): 495-504, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31364226

RESUMO

Infection with Haemonchus contortus is the most economically important gastrointestinal nematode parasitosis and the most important cause of mortality in sheep production. The aim of this study was to estimate variance components of gastrointestinal parasite resistance traits, maternal efficiency (ME) and ewe adult weight (AW) in Santa Inês breed in tropical conditions. The phenotypic records were collected from 700 animals, belonging to four flocks located south-east and north-east in Brazil. The evaluated traits were as follows: degree of anaemia assessed using the FAMACHA chart (FMC), haematocrit (HCT), white blood cell (WBC), red blood cell (RBC), haemoglobin (HGB), platelets (PLT), faecal egg count (EPGlog ), ME, metabolic maternal efficiency (MME), AW and metabolic ewe adult weight (MAW). From the 700 animals, 576 (82% of the evaluated population) were genotyped with the Ovine SNP12k BeadChip (Illumina, Inc.). Markers with unknown genomic position, located on sex chromosomes, monomorphic, with minor allele frequency <0.05, call rate <90% and with excess heterozygosity were excluded. The variance components were estimated using a single-trait animal model with ssGBLUP procedure. The correlation between the parasite's resistance indicators and the ME suggested that selecting animals with both higher adult weight and ME will also favour the selection of animals with better resistance to gastrointestinal nematodes parasites, specially H. contortus. Therefore, since there are few or no studies with Santa Inês breed in this area, it is important to study those traits to better manage selection programs.


Assuntos
Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/parasitologia , Haemonchus/fisiologia , Ovinos/genética , Ovinos/parasitologia , Animais , Feminino , Trato Gastrointestinal/metabolismo , Genótipo , Masculino , Fenótipo , Ovinos/fisiologia
5.
Sci Rep ; 9(1): 5364, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926873

RESUMO

Improving nutrient utilization efficiency is essential for livestock, given the current scenario of increasing demand for animal protein and sustainable resource use. In this context, understanding the biology of feed efficiency (FE) in beef cattle allows the development of markers for identification and selection of best animals for animal production. Thus, 98 young Nellore bulls were evaluated for FE and at the end of the experiment liver samples from six High Feed Efficient (HFE) and six Low Feed Efficient (LFE) animals were collected for protein extraction, digestion and analysis by HPLC-MS/MS. Data were analyzed for differential abundant proteins (DAPs), protein networks, and functional enrichment. Serum endotoxin was also quantified. We found 42 DAPs and 3 protein networks significantly related to FE. The main pathways associated with FE were: microbial metabolism; biosynthesis of fatty acids, amino acids and vitamins; glycolysis/gluconeogenesis; xenobiotic metabolism and; antigen processing and presentation. Serum endotoxins were significantly higher in LFE animals supporting the results. Therefore, the findings presented here confirmed the altered hepatic metabolism and pronounced hepatic inflammation in LFE animals supporting that the increased bacterial load is at least in part responsible for the hepatic lesions and inflammation in LFE animals.


Assuntos
Ração Animal , Fígado/metabolismo , Proteômica , Animais , Bovinos , Redes e Vias Metabólicas , Espectrometria de Massas em Tandem
6.
J Anim Breed Genet ; 136(1): 23-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30565335

RESUMO

The objective of the present study was to investigate the impact of considering population structure in cow genotyping strategies over the accuracy and bias of genomic predictions. A small dairy cattle population was simulated to address these objectives. Based on four main traditional designs (random, top-yield, extreme-yield and top-accuracy cows), different numbers (1,000; 2,000 and 5,000) of cows were sampled and included in the reference population. Traditional designs were replicated considering or not population structure and compared among and with a reference population containing only bulls. The inclusion of cows increased accuracy in all scenarios compared with using only bulls. Scenarios accounting for population structure when choosing cows to the reference population slightly outperformed their traditional versions by yielding higher accuracy and lower bias in genomic predictions. Building a cow-based reference population from groups of related individuals considering the frequency of individuals from those same groups in the validation population yielded promising results with applications on selection for expensive- or difficult-to-measure traits. Methods here presented may be easily implemented in both new or already established breeding programs, as they improved prediction and reduced bias in genomic evaluations while demanding no additional costs.


Assuntos
Cruzamento/métodos , Bovinos/genética , Genótipo , Animais , Feminino , Fenótipo
7.
J Dairy Sci ; 100(12): 9623-9634, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28987572

RESUMO

The objective of this study was to investigate different strategies for genotype imputation in a population of crossbred Girolando (Gyr × Holstein) dairy cattle. The data set consisted of 478 Girolando, 583 Gyr, and 1,198 Holstein sires genotyped at high density with the Illumina BovineHD (Illumina, San Diego, CA) panel, which includes ∼777K markers. The accuracy of imputation from low (20K) and medium densities (50K and 70K) to the HD panel density and from low to 50K density were investigated. Seven scenarios using different reference populations (RPop) considering Girolando, Gyr, and Holstein breeds separately or combinations of animals of these breeds were tested for imputing genotypes of 166 randomly chosen Girolando animals. The population genotype imputation were performed using FImpute. Imputation accuracy was measured as the correlation between observed and imputed genotypes (CORR) and also as the proportion of genotypes that were imputed correctly (CR). This is the first paper on imputation accuracy in a Girolando population. The sample-specific imputation accuracies ranged from 0.38 to 0.97 (CORR) and from 0.49 to 0.96 (CR) imputing from low and medium densities to HD, and 0.41 to 0.95 (CORR) and from 0.50 to 0.94 (CR) for imputation from 20K to 50K. The CORRanim exceeded 0.96 (for 50K and 70K panels) when only Girolando animals were included in RPop (S1). We found smaller CORRanim when Gyr (S2) was used instead of Holstein (S3) as RPop. The same behavior was observed between S4 (Gyr + Girolando) and S5 (Holstein + Girolando) because the target animals were more related to the Holstein population than to the Gyr population. The highest imputation accuracies were observed for scenarios including Girolando animals in the reference population, whereas using only Gyr animals resulted in low imputation accuracies, suggesting that the haplotypes segregating in the Girolando population had a greater effect on accuracy than the purebred haplotypes. All chromosomes had similar imputation accuracies (CORRsnp) within each scenario. Crossbred animals (Girolando) must be included in the reference population to provide the best imputation accuracies.


Assuntos
Bovinos/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Feminino , Haplótipos
9.
BMC Genomics ; 16: 1073, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26678995

RESUMO

BACKGROUND: The selection of beef cattle for feed efficiency (FE) traits is very important not only for productive and economic efficiency but also for reduced environmental impact of livestock. Considering that FE is multifactorial and expensive to measure, the aim of this study was to identify biological functions and regulatory genes associated with this phenotype. RESULTS: Eight genes were differentially expressed between high and low feed efficient animals (HFE and LFE, respectively). Co-expression analyses identified 34 gene modules of which 4 were strongly associated with FE traits. They were mainly enriched for inflammatory response or inflammation-related terms. We also identified 463 differentially co-expressed genes which were functionally enriched for immune response and lipid metabolism. A total of 8 key regulators of gene expression profiles affecting FE were found. The LFE animals had higher feed intake and increased subcutaneous and visceral fat deposition. In addition, LFE animals showed higher levels of serum cholesterol and liver injury biomarker GGT. Histopathology of the liver showed higher percentage of periportal inflammation with mononuclear infiltrate. CONCLUSION: Liver transcriptomic network analysis coupled with other results demonstrated that LFE animals present altered lipid metabolism and increased hepatic periportal lesions associated with an inflammatory response composed mainly by mononuclear cells. We are now focusing to identify the causes of increased liver lesions in LFE animals.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Fígado/metabolismo , Característica Quantitativa Herdável , Transcriptoma , Animais , Bovinos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala
10.
BMC Genet ; 15: 21, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24517472

RESUMO

BACKGROUND: Feed intake plays an important economic role in beef cattle, and is related with feed efficiency, weight gain and carcass traits. However, the phenotypes collected for dry matter intake and feed efficiency are scarce when compared with other measures such as weight gain and carcass traits. The use of genomic information can improve the power of inference of studies on these measures, identifying genomic regions that affect these phenotypes. This work performed the genome-wide association study (GWAS) for dry matter intake (DMI) and residual feed intake (RFI) of 720 Nellore cattle (Bos taurus indicus). RESULTS: In general, no genomic region extremely associated with both phenotypic traits was observed, as expected for the variables that have their regulation controlled by many genes. Three SNPs surpassed the threshold for the Bonferroni multiple test for DMI and two SNPs for RFI. These markers are located on chromosomes 4, 8, 14 and 21 in regions near genes regulating appetite and ion transport and close to important QTL as previously reported to RFI and DMI, thus corroborating the literature that points these two processes as important in the physiological regulation of intake and feed efficiency. CONCLUSIONS: This study showed the first GWAS of DMI to identify genomic regions associated with feed intake and efficiency in Nellore cattle. Some genes and QTLs previously described for DMI and RFI, in other subspecies (Bos taurus taurus), that influences these phenotypes are confirmed in this study.


Assuntos
Ingestão de Alimentos/genética , Ração Animal , Animais , Apetite/genética , Peso Corporal , Bovinos , Ingestão de Alimentos/fisiologia , Estudos de Associação Genética , Genótipo , Transporte de Íons/genética , Masculino , Carne , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Aumento de Peso
11.
Meta Gene ; 2: 206-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25606404

RESUMO

The Nuclear receptor 1 family I member 3 (NR1I3), also known as the Constitutive Androstane Receptor (CAR), was initially characterized as a key regulator of xenobiotic metabolism. However, recent biochemical and structural data suggest that NR1I3 is activated in response to metabolic and nutritional stress in a ligand-independent manner. Thus, we prospected the Bovine NR1I3 gene for polymorphisms and studied their association with feed efficiency traits in Nellore cattle. First, 155 purebred Nellore bulls were individually measured for Residual Feed Intake (RFI) and the 25 best (High Feed Efficiency group, HFE) and the 25 worst animals (Low Feed Efficiency group, LFE) were selected for DNA extraction. The entire Bovine NR1I3 gene was amplified and polymorphisms were identified by sequencing. Then, one SNP different between HFE and LFE groups was genotyped in all the 155 animals and in another 288 animals totalizing 443 Nellore bulls genotyped for association of NR1I3 SNPs with feed efficiency traits. We found 24 SNPs in the NR1I3 gene and choose a statistically different SNP between HFE and LFE groups for further analysis. Genotyping of the 155 animals showed a significant association within SNP and RFI (p = 0.04), Residual Intake and BW Gain (p = 0.04) and Dry Matter Intake (p = 0.01). This SNP is located in the 5'flanking promoter region of NR1I3 gene and different alleles alter the binding site for predicted transcriptional factors as HNF4alpha, CREM and c-MYB, leading us to conclude that NR1I3 expression and regulation might be important to feed efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...