Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338673

RESUMO

Metabolic bone diseases cover a broad spectrum of disorders that share alterations in bone metabolism that lead to a defective skeleton, which is associated with increasing morbidity, disability, and mortality. There is a close connection between the etiology of metabolic bone diseases and genetic factors, with TP53 being one of the genes associated therewith. The single nucleotide polymorphism (SNP) Arg72Pro of TP53 is a genetic factor associated with several pathologies, including cancer, stroke, and osteoporosis. Here, we aim to analyze the influence of the TP53 Arg72Pro SNP on bone mass in humanized Tp53 Arg72Pro knock-in mice. This work reports on the influence of the TP53 Arg72Pro polymorphism in bone microarchitecture, OPG expression, and apoptosis bone status. The results show that the proline variant of the TP53 Arg72Pro polymorphism (Pro72-p53) is associated with deteriorated bone tissue, lower OPG/RANK ratio, and lower apoptosis in bone tissue. In conclusion, the TP53 Arg72Pro polymorphism modulates bone microarchitecture and may be a genetic biomarker that can be used to identify individuals with an increased risk of suffering metabolic bone alterations.


Assuntos
Doenças Ósseas Metabólicas , Proteína Supressora de Tumor p53 , Animais , Camundongos , Biomarcadores , Osso e Ossos , Estudos de Casos e Controles , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Humanos
2.
Heliyon ; 9(9): e19819, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809885

RESUMO

This paper presents the characterization of a TIG welding process carried out by means of an arc welding power supply able to provide dc or pulsed current. The arc welding power supply is based on resonant power converters and an FPGA-based control circuit. Dc and multiple pulsed operations up to 1 kHz with different pulse widths have been tested. The operation of the proposed welding power supply has been compared to that of a high-quality commercial welding machine. Regarding performance, the investigated electrical parameters are: power factor, power conversion efficiency and the energy consumption of the process. The radiography and mechanical properties of the welds have been examined. The mechanical properties of the welded joints characterized through tensile tests are the yield stress, tensile strength and the strain under maximum stress. In addition, the impact properties of the joints were determined through Charpy tests and the curves relating energy absorbed and temperature were obtained. The results show an improved performance of the proposed arc welding power supply over the commercial counterpart, with higher efficiency and power factor, as well as lower energy consumption. The yield stress and tensile strength results indicate that the welded plates using pulsed modes with the proposed power supply are comparable to the reference weld performed with dc operation using the commercial welder. Remarkably, it was observed that the ductility of the welded plates using pulsed modes with the proposed power supply outperforms those of the reference weld carried out with dc arc using the commercial welder.

4.
Data Brief ; 50: 109471, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37584056

RESUMO

The structural elements within power transformers are commonly constructed from high-density pressboard, chosen for its favourable mechanical and dielectric properties. Among these elements are the spacers employed in the windings of transformers, which endure compressive loading during operation. The spacers are immersed in dielectric fluid and exposed to high temperatures and chemical reactions over the transformer's lifespan, resulting in the degradation of their dielectric and mechanical properties. The mechanical integrity of the power transformer significantly relies on these factors; hence, it is imperative to comprehend how ageing deteriorates the mechanical response of the high-density pressboard. The present article presents experimental data on the compressive mechanical properties of a commercially available high-density pressboard, commonly employed in power transformer spacers, under various ageing conditions (induced through accelerated thermal ageing and assessed by the degree of polymerisation). These data hold potential for diverse applications. They can enhance the existing comprehension of the mechanical behaviour and degradation mechanisms of cellulosic insulation in power transformers and provide reference benchmarks for comparison with factory-obtained values by manufacturers. In the realm of engineering failure analysis, these values can be utilised to evaluate the mechanical failures of paper-based materials utilised as structural components in power transformers.

5.
Med Eng Phys ; 110: 103919, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564142

RESUMO

This paper is aimed at identifying by means of micro-CT the microstructural differences between normal and degenerative mitral marginal chordae tendineae. The control group is composed of 21 normal chords excised from 14 normal mitral valves from heart transplant recipients. The experimental group comprises 22 degenerative fibroelastic chords obtained at surgery from 11 pathological valves after mitral repair or replacement. In the control group the superficial endothelial cells and spongiosa layer remained intact, covering the wavy core collagen. In contrast, in the experimental group the collagen fibers were arranged as straightened thick bundles in a parallel configuration. 100 cross-sections were examined by micro-CT from each chord. Each image was randomized through the K-means machine learning algorithm and then, the global and local Shannon entropies were obtained. The optimum number of clusters, K, was estimated to maximize the differences between normal and degenerative chords in global and local Shannon entropy; the p-value after a nested ANOVA test was chosen as the parameter to be minimized. Optimum results were obtained with global Shannon entropy and 2≤K≤7, providing p < 0.01; for K=3, p = 2.86·10-3. These findings open the door to novel perioperative diagnostic methods in order to avoid or reduce postoperative mitral valve regurgitation recurrences.


Assuntos
Células Endoteliais , Insuficiência da Valva Mitral , Humanos , Cordas Tendinosas/patologia , Colágeno , Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Microtomografia por Raio-X
6.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433067

RESUMO

The superstructure of modern railway lines uses tons of technical polymeric material spread along the track with mechanical, insulating and damping functions. Many of these parts are rejected because they do not pass the quality controls, generating a large accumulation of plastic waste of high economic value. Therefore, this study is aimed at determining the optimum degree of recyclability by mechanical crushing of geometrically defective (and so rejected) railway fastenings flanged plates injected with short fiberglass-reinforced polyamide. After recycling, the material must guarantee its physical and mechanical properties required to ensure the future in-service conditions of the highly responsible components that guarantee the maintenance of the railway gauge. Viscosity, mechanical properties (tensile test), Charpy and fracture toughness as well as fatigue performance were determined for ten successive recyclings. It has been found that the drop of viscosity is the most restrictive limitation, allowing three recyclings of the material. All the properties measured have experienced a noticeable reduction after 10 recyclings. Specifically, viscosity is reduced by 15%, ultimate strength by 70%, yield stress by 41% strain under maximum load lost by 70%, Young's modulus lost by 38%, Charpy impact strength by 70%, fatigue resistance by 69% and fracture toughness lost by 80%. With the development of this study and taking into account that the market price of the flanged plates is valued at approximately 8 k€/km, of which around 5 k€/km corresponds to the raw material, the recovery of this material not only represents a great environmental benefit but also an economic one.

7.
Biomolecules ; 12(5)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625649

RESUMO

The purpose of this study was to analyze the regenerative capacity of mesenchymal stem cells (MSCs) in the treatment of fractures. MSCs extracted from patients with osteoporotic hip fractures or hip osteoarthritis undergoing hip replacement surgeries were cultured and injected into mice with femoral fracture. Two experimental models were established, one for the systemic administration of MSCs (n = 29) and another one for local administration (n = 30). Fracture consolidation was assessed by micro-CT and histology. The degree of radiological consolidation and corticalization was better with MSCs from osteoporosis than from osteoarthritis, being significant after systemic administration (p = 0.0302 consolidation; p = 0.0243 corticalization). The histological degree of consolidation was also better with MSCs from osteoporosis than from osteoarthritis. Differences in histological scores after systemic infusion were as follows: Allen, p = 0.0278; Huo, p = 0.3471; and Bone Bridge, p = 0.0935. After local administration at the fracture site, differences in histological scores were as follows: Allen, p = 0.0764; Huo, p = 0.0256; and Bone Bridge, p = 0.0012. As osteoporosis and control groups were similar, those differences depended on an inhibitory influence by MSCs from patients with osteoarthritis. In conclusion, we found an unexpected impairment of consolidation induced by MSCs from patients with osteoarthritis. However, MSCs from patients with osteoporosis compared favorably with cells from patients with osteoarthritis. In other words, based on this study and previous studies, MSCs from patients with osteoporosis do not appear to have worse bone-regenerating capabilities than MSCs from non-osteoporotic individuals of similar age.


Assuntos
Fraturas do Fêmur , Células-Tronco Mesenquimais , Osteoartrite , Osteoporose , Fraturas por Osteoporose , Animais , Modelos Animais de Doenças , Fraturas do Fêmur/terapia , Consolidação da Fratura , Humanos , Camundongos
8.
Data Brief ; 36: 107031, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997193

RESUMO

The solid insulation in the windings of power transformers, which generally consists of oil-impregnated thin paper, is one of the key elements for the performance and durability of these electrical machines. Insulation paper is subjected to static and dynamic forces of electromagnetic origin, in combination with high temperatures and chemical reactions, during the operating life of a power transformer. The mechanical properties of the cellulosic insulation are relevant parameters because its breakage could result in the electric failure of the transformer. Indeed, paper manufacturers usually provide values of the tensile strength and elongation at breakage of the insulating paper in its two principal material directions, the MD (machine direction) and CD (cross-direction). However, paper is a highly anisotropic material and its material properties evolve as the paper insulation ages. The paper insulation in an operating transformer is subjected to a multiaxial stress state field including compressive and shear stresses. This article reports experimental data on the tensile and compressive mechanical properties of two types of paper, plain Kraft and crepe paper, typically used as insulation in power transformers, under different ageing states (which were induced through accelerated thermal ageing and quantified by means of the degree of polymerisation). These data could be reused for several purposes. They can improve the current understanding of the mechanical response and degradation processes of the cellulosic insulation in power transformers, and give some reference values that can be compared with others obtained in the factory by manufacturers. In the field of engineering failure analysis, those values could be reused for the assessment of mechanical failure of paper materials used in power transformers, see [1].

9.
J Mech Behav Biomed Mater ; 65: 200-212, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591507

RESUMO

The influence of the orientation of rat bones on their mechanical response is analyzed in this research. 28 femora obtained from 14 Sprague-Dawley rats were subjected to three-point bending tests, comparing the anteroposterior and posteroanterior orientations. The results show that the whole-bone loading capacity of the femora tested in the posteroanterior orientation clearly exceeds that of the anteroposterior oriented bones. Likewise, the intrinsic (tissue-level) loading capacity of the bones tested in the posteroanterior orientation is manifestly higher than that of the bones tested in the opposite direction. The analysis carried out shows that applying beam theory for symmetric cross-sections leads to underestimating the stress state in the cross-section. In this sense, it is generally recommendable to use the non-symmetric beam theory in order to obtain the normal stresses during bending tests. The geometric, intrinsic and global changes resulting from the orientation of the bones was assessed, finding out that it is the variation in the intrinsic properties which explains the change measured in the whole-bone properties. The experimental scope was increased, including 8 additional femora on which a series of Vickers tests were carried out in the anterior and posterior regions of the cross-section. In all cases the hardness obtained in the anterior region is larger than in the posterior region. This result confirms that the mechanical properties of the bone tissue depend on its position in the cross-section and provides a reliable explanation to understand the response of the bones when subjected to bending tests. These results stress the importance of reporting the orientation of the bones in any scientific paper because, otherwise, it would be impossible to properly assess its impact and relevance.


Assuntos
Osso e Ossos/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...