Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734969

RESUMO

While CRISPR-Cas9 technology has demonstrated remarkable promise as a gene editing tool, its application in certain insects, such as the jewel wasp, Nasonia vitripennis, has been hindered by a lack of a tractable method for reagent delivery. Direct Parental-CRISPR (DIPA-CRISPR) recently emerged as a facile way to induce gene lesions because it involves adult injection with commercially available Cas9-sgRNA with no helper reagent. However, DIPA-CRISPR has so far been tested in only a few insects. Here, we have assessed the viability of DIPA-CRISPR in N. vitripennis by targeting two eye-pigmentation genes, cinnabar and vermilion, which function in the ommochrome pathway. Successful generation of lesions in both genes demonstrated the functionality of DIPA-CRISPR in N. vitripennis and its potential application to other genes, thereby expanding the range of insects suitable for this method. We varied two parameters, Cas9-sgRNA concentration and injection volume, to determine optimal injection conditions. We found that the larger injection volume coupled with either higher or lower concentration was needed for consistent mutation production. However, DIPA-CRISPR yields an overall low mutation rate in N. vitripennis when compared to other tested insects, a characteristic that may be attributed to a proportionally low vitellogenic import efficiency in the jewel wasp. We discuss different factors that may be considered in determining when DIPA-CRISPR may be preferable over other reagent delivery methods.

2.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38626314

RESUMO

Since the discovery of B chromosomes, multiple different definitions of these selfish genetic elements have been put forth. We reconsidered early definitions in light of recently published studies. While there are many characteristics that vary among different B chromosomes, such as their evolutionary origins, size, segregation behaviors, gene content, and function, there is one defining trait of all B chromosomes: they are nonessential for the organism. The points raised here may be useful for framing future B chromosome studies and help guide the categorization of new chromosomal elements that are uncovered in genomic studies.


Assuntos
Cromossomos , Animais , Cromossomos/genética , Evolução Molecular
3.
Biochem Cell Biol ; 102(3): 238-251, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408323

RESUMO

Insects are the largest group of animals when it comes to the number and diversity of species. Yet, with the exception of Drosophila, no information is currently available on the primary structure of their sperm nuclear basic proteins (SNBPs). This paper represents the first attempt in this regard and provides information about six species of Neoptera: Poecillimon thessalicus, Graptosaltria nigrofuscata, Apis mellifera, Nasonia vitripennis, Parachauliodes continentalis, and Tribolium castaneum. The SNBPs of these species were characterized by acetic acid urea gel electrophoresis (AU-PAGE) and high-performance liquid chromatography fractionated. Protein sequencing was obtained using a combination of mass spectrometry sequencing, Edman N-terminal degradation sequencing and genome mining. While the SNBPs of several of these species exhibit a canonical arginine-rich protamine nature, a few of them exhibit a protamine-like composition. They appear to be the products of extensive cleavage processing from a precursor protein which are sometimes further processed by other post-translational modifications that are likely involved in the chromatin transitions observed during spermiogenesis in these organisms.


Assuntos
Sequência de Aminoácidos , Protaminas , Animais , Masculino , Protaminas/metabolismo , Protaminas/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Insetos/metabolismo , Dados de Sequência Molecular , Espermatozoides/metabolismo
4.
Semin Cell Dev Biol ; 159-160: 66-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394822

RESUMO

B chromosomes are intriguing "selfish" genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism's reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect's essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.


Assuntos
Vespas , Humanos , Animais , Masculino , Feminino , Vespas/genética , Sêmen , Cromossomos/genética , Genoma , Sequência de Bases
5.
Heredity (Edinb) ; 131(3): 230-237, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524915

RESUMO

B chromosomes are non-essential, extra chromosomes that can exhibit transmission-enhancing behaviors, including meiotic drive, mitotic drive, and induction of genome elimination, in plants and animals. A fundamental but poorly understood question is what characteristics allow B chromosomes to exhibit these extraordinary behaviors. The jewel wasp, Nasonia vitripennis, harbors a heterochromatic, paternally transmitted B chromosome known as paternal sex ratio (PSR), which causes complete elimination of the sperm-contributed half of the genome during the first mitotic division of fertilized embryos. This genome elimination event may result from specific, previously observed alterations of the paternal chromatin. Due to the haplo-diploid reproduction of the wasp, genome elimination by PSR causes female-destined embryos to develop as haploid males that transmit PSR. PSR does not undergo self-elimination despite its presence with the paternal chromatin until the elimination event. Here we performed fluorescence microscopic analyses aimed at understanding this unexplained property. Our results show that PSR, like the rest of the genome, participates in the histone-to-protamine transition, arguing that PSR does not avoid this transition to escape self-elimination. In addition, PSR partially escapes the chromatin-altering activity of the intracellular bacterium, Wolbachia, demonstrating that this ability to evade chromatin alteration is not limited to PSR's own activity. Finally, we observed that the rDNA locus and other unidentified heterochromatic regions of the wasp's genome also seem to evade chromatin disruption by PSR, suggesting that PSR's genome-eliminating activity does not affect heterochromatin. Thus, PSR may target an aspect of euchromatin to cause genome elimination.


Assuntos
Cromossomos de Insetos , Genoma de Inseto , Animais , Protaminas/genética , Protaminas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Feminino , Genes de RNAr , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Loci Gênicos
6.
Curr Biol ; 33(11): R431-R434, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279661

RESUMO

A study in the fruit fly Drosophila melanogaster shows that a defective chromosome segregation system allows non-essential B chromosomes to transmit at higher-than-Mendelian frequencies.


Assuntos
Segregação de Cromossomos , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Cromossomos/genética , Drosophila/genética , Meiose
7.
Fly (Austin) ; 16(1): 111-117, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35227166

RESUMO

Downregulation of protein phosphatase Cdc25Twine activity is linked to remodelling of the cell cycle during the Drosophila maternal-to-zygotic transition (MZT). Here, we present a structure-function analysis of Cdc25Twine. We use chimeras to show that the N-terminus regions of Cdc25Twine and Cdc25String control their differential degradation dynamics. Deletion of different regions of Cdc25Twine reveals a putative domain involved in and required for its rapid degradation during the MZT. Notably, a very similar domain is present in Cdc25String and deletion of the DNA replication checkpoint results in similar dynamics of degradation of both Cdc25String and Cdc25Twine. Finally, we show that Cdc25Twine degradation is delayed in embryos lacking the left arm of chromosome III. Thus, we propose a model for the differential regulation of Cdc25 at the Drosophila MZT.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fosfoproteínas Fosfatases/metabolismo
8.
Heredity (Edinb) ; 126(5): 707-716, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649572

RESUMO

Insects naturally harbor a broad range of selfish agents that can manipulate their reproduction and development, often leading to host sex ratio distortion. Such effects directly benefit the spread of the selfish agents. These agents include two broad groups: bacterial symbionts and selfish chromosomes. Recent studies have made steady progress in uncovering the cellular targets of these agents and their effector genes. Here we highlight what is known about the targeted developmental processes, developmental timing, and effector genes expressed by several selfish agents. It is now becoming apparent that: (1) the genetic toolkits used by these agents to induce a given reproductive manipulation are simple, (2) these agents target sex-specific cellular processes very early in development, and (3) in some cases, similar processes are targeted. Knowledge of the molecular underpinnings of these systems will help to solve long-standing puzzles and provide new tools for controlling insect pests.


Assuntos
Reprodução , Razão de Masculinidade , Animais , Bactérias , Cromossomos , Feminino , Insetos/genética , Masculino
9.
Biol Lett ; 16(5): 20200137, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32396789

RESUMO

Egg development is a defining process of reproduction in higher eukaryotes. In the fruit fly, Drosophila melanogaster, this process begins with four mitotic divisions starting from a single germ cell, producing a cyst of 16 cystocytes; one of these cells will become the oocyte and the others supporting nurse cells. These mitotic divisions are exceptional because cytokinesis is incomplete, resulting in the formation of cytoplasmic bridges known as ring canals that interconnect the cystocytes. This organization allows all cystocytes to divide synchronously during each mitotic round, resulting in a final, power-of-2 number of germ cells. Given that numerous insects obey this power-of-2 rule, we investigated if strict cell doubling is a universal, underlying cause. Using confocal microscopy, we found striking departures from this paradigm in three different power-of-2 insects belonging to the Apocrita suborder (ants, bees and wasps). In these insects, the earliest-formed cystocytes cease to divide during the latter mitotic cycles while their descendants undergo further division, thereby producing a 'radial' direction of division activity. Such cystocyte division patterns that depart from strict cell doubling may be 'fine-tuned' in order to maintain a final, power-of-2 germ cell number.


Assuntos
Drosophila melanogaster , Oogênese , Animais , Divisão Celular , Células Germinativas , Oócitos
10.
Sci Adv ; 6(14): eaaz9808, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284986

RESUMO

Numerous plants and animals harbor selfish B chromosomes that "drive" or transmit themselves at super-Mendelian frequencies, despite long-term fitness costs to the organism. Currently, it is unknown how B chromosome drive is mediated, and whether B-gene expression plays a role. We used modern sequencing technologies to analyze the fine-scale sequence composition and expression of paternal sex ratio (PSR), a B chromosome in the jewel wasp Nasonia vitripennis. PSR causes female-to-male conversion by destroying the sperm's hereditary material in young embryos to drive. Using RNA interference, we demonstrate that testis-specific expression of a PSR-linked gene, named haploidizer, facilitates this genome elimination-and-sex conversion effect. haploidizer encodes a putative protein with a DNA binding domain, suggesting a functional link with the sperm-derived chromatin.


Assuntos
Cromossomos , Evolução Molecular , Expressão Gênica , Genoma , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Feminino , Genômica/métodos , Hibridização in Situ Fluorescente , Masculino , Anotação de Sequência Molecular , Interferência de RNA , Testículo/metabolismo
11.
Sci Rep ; 9(1): 12194, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434920

RESUMO

Males of hymenopteran insects, which include ants, bees and wasps, develop as haploids from unfertilized eggs. In order to accommodate their lack of homologous chromosome pairs, some hymenopterans such as the honeybee have been shown to produce haploid sperm through an abortive meiosis. We employed microscopic approaches to visualize landmark aspects of spermatogenesis in the jewel wasp Nasonia vitripennis, a model for hymenopteran reproduction and development. Our work demonstrates that N. vitripennis, like other examined hymenopterans, exhibits characteristics indicative of an abortive meiosis, including slight enlargement of spermatocytes preceding meiotic initiation. However, we saw no evidence of cytoplasmic buds containing centrioles that are produced from the first abortive meiotic division, which occurs in the honeybee. In contrast to other previously studied hymenopterans, N. vitripennis males produce sperm in bundles that vary widely from 16 to over 200, thus reflecting a range of cellular divisions. Our results highlight interesting variations in spermatogenesis among the hymenopteran insects, and together with previous studies, they suggest a pattern of progression from meiosis to a more mitotic state in producing sperm.


Assuntos
Cromossomos de Insetos/metabolismo , Haploidia , Meiose/fisiologia , Espermatogênese/fisiologia , Vespas/metabolismo , Animais , Masculino
12.
Curr Biol ; 29(7): R252-R254, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939309

RESUMO

The maternal-to-zygotic transition in the Drosophila embryo requires accurate control of the levels of free nucleotides, arguing for an essential role of nucleotide metabolism in the regulation of the cell cycle during early embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Nucleotídeos , Animais , Ciclo Celular , Biologia do Desenvolvimento , Zigoto
13.
Genes (Basel) ; 10(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744010

RESUMO

B chromosomes are enigmatic heritable elements found in the genomes of numerous plant and animal species. Contrary to their broad distribution, most B chromosomes are non-essential. For this reason, they are regarded as genome parasites. In order to be stably transmitted through generations, many B chromosomes exhibit the ability to "drive", i.e., they transmit themselves at super-Mendelian frequencies to progeny through directed interactions with the cell division apparatus. To date, very little is understood mechanistically about how B chromosomes drive, although a likely scenario is that expression of B chromosome sequences plays a role. Here, we highlight a handful of previously identified B chromosome sequences, many of which are repetitive and non-coding in nature, that have been shown to be expressed at the transcriptional level. We speculate on how each type of expressed sequence could participate in B chromosome drive based on known functions of RNA in general chromatin- and chromosome-related processes. We also raise some challenges to functionally testing these possible roles, a goal that will be required to more fully understand whether and how B chromosomes interact with components of the cell for drive and transmission.


Assuntos
Cromossomos/genética , Animais , Cromossomos/metabolismo , Elementos de DNA Transponíveis , Evolução Molecular , Fases de Leitura Aberta , Sequências Repetitivas de Ácido Nucleico
14.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28878066

RESUMO

Cytoplasmic incompatibility (CI) is a conditional sterility in numerous arthropods that is caused by inherited, intracellular bacteria such as Wolbachia Matings between males carrying CI-inducing Wolbachia and uninfected females, or between males and females infected with different Wolbachia strains, result in progeny that die during very early embryogenesis. Multiple studies in diploid (Drosophila) and haplodiploid (Nasonia) insects have shown that CI-Wolbachia cause a failure of the paternally derived chromatin from resolving into distinct chromosomes. This leads to the formation of chromatin bridges and other mitotic defects as early as the first mitotic division, and to early mitotic arrest. It is currently unknown if CI-inducing symbionts other than Wolbachia affect similar cellular processes. Here, we investigated CI caused by an unrelated bacterium, Cardinium, which naturally infects a parasitic wasp, Encarsia suzannae CI crosses in this host-symbiont system resulted in early mitotic defects including asynchrony of paternal and maternal chromosome sets as they enter mitosis, chromatin bridges and improper chromosome segregation that spanned across multiple mitotic divisions, triggering embryonic death through accumulated aneuploidy. We highlight small differences with CI-Wolbachia, which could be due to the underlying CI mechanism or host-specific effects. Our results suggest a convergence of CI-related cellular phenotypes between these two unrelated symbionts.


Assuntos
Cytophagaceae , Citoplasma/microbiologia , Vespas/microbiologia , Aneuploidia , Animais , Feminino , Masculino , Mitose , Reprodução , Simbiose , Wolbachia
15.
Chromosoma ; 126(6): 753-768, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28780664

RESUMO

B chromosomes are found in numerous plants and animals. These nonessential, supernumerary chromosomes are often composed primarily of noncoding DNA repeats similar to those found within transcriptionally "silenced" heterochromatin. In order to persist within their resident genomes, many B chromosomes exhibit exceptional cellular behaviors, including asymmetric segregation into gametes and induction of genome elimination during early development. An important goal in understanding these behaviors is to identify unique B chromosome sequences and characterize their transcriptional contributions. We investigated these properties by examining a paternally transmitted B chromosome known as paternal sex ratio (PSR), which is present in natural populations of the jewel wasp Nasonia vitripennis. To facilitate its own transmission, PSR severely biases the sex ratio by disrupting early chromatin remodeling processes. Through cytological mapping and other approaches, we identified multiple DNA repeats unique to PSR, as well as those found on the A chromosomes, suggesting that PSR arose through a merger of sequences from both within and outside the N. vitripennis genome. The majority of PSR-specific repeats are interspersed among each other across PSR's long arm, in contrast with the distinct "blocks" observed in other organisms' heterochromatin. Through transcriptional profiling, we identified a subset of repeat-associated, small RNAs expressed by PSR, most of which map to a single PSR-specific repeat. These RNAs are expressed at much higher levels than those arising from A chromosome-linked repeats, suggesting that in addition to its sequence organization, PSR's transcriptional properties differ substantially from the pericentromeric regions of the normal chromosomes.


Assuntos
Cromossomos de Insetos , Expressão Gênica , Pequeno RNA não Traduzido , Vespas/genética , Animais , Feminino , Genoma de Inseto , Masculino , Conformação de Ácido Nucleico , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Razão de Masculinidade
16.
Dev Cell ; 42(3): 203-205, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28787585

RESUMO

Early embryonic development is characterized by rapid cleavage divisions, which impose significant constraints on metabolic pathways. In this issue, Song et al. (2017) show that Drosophila embryos synthesize a large fraction of nucleotides on the go and that negative feedback between dATP and ribonucleotide reductase ensures tight control of dNTP concentration.


Assuntos
Drosophila/embriologia , Ribonucleotídeo Redutases , Animais , Feminino , Nucleotídeos/biossíntese
18.
Curr Biol ; 27(12): 1866, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28633021
19.
Front Genet ; 8: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487723

RESUMO

B chromosomes are non-essential components of numerous plant and animal genomes. Because many of these "extra" chromosomes enhance their own transmission in ways that are detrimental to the rest of the genome, they can be thought of as genome parasites. An extreme example is a paternally inherited B chromosome known as paternal sex ratio (PSR), which is found in natural populations of the jewel wasp Nasonia vitripennis. In order to ensure its own propagation, PSR severely biases the wasp sex ratio by converting diploid female-destined embryos into transmitting haploid males. This action occurs at the expense of the other paternally inherited chromosomes, which fail to resolve during the first round of division and are thus eliminated. Recent work has revealed that paternal genome elimination by PSR occurs through the disruption of a number of specific histone post-translational modifications, suggesting a central role for chromatin regulation in this phenomenon. In this review, we describe these recent advances in the light of older ones and in the context of what is currently understood about the molecular mechanisms of targeted genome silencing and elimination in other systems.

20.
Curr Biol ; 27(10): R378-R380, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28535386

RESUMO

Dosage compensation in some animals involves up-regulation of genes on the male's X chromosome. A study in the fruit fly Drosophila melanogaster shows that satellite DNA, and corresponding small non-coding RNA, helps the dosage compensation machinery preferentially find X sequences.


Assuntos
Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Animais , Cromatina , DNA Satélite , Drosophila melanogaster/genética , Feminino , Masculino , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...