Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 420, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582915

RESUMO

The morpho-functional properties of neural networks constantly adapt in response to environmental stimuli. The olfactory bulb is particularly prone to constant reshaping of neural networks because of ongoing neurogenesis. It remains unclear whether the complexity of distinct odor-induced learning paradigms and sensory stimulation induces different forms of structural plasticity. In the present study, we automatically reconstructed spines in 3D from confocal images and performed unsupervised clustering based on morphometric features. We show that while sensory deprivation decreased the spine density of adult-born neurons without affecting the morphometric properties of these spines, simple and complex odor learning paradigms triggered distinct forms of structural plasticity. A simple odor learning task affected the morphometric properties of the spines, whereas a complex odor learning task induced changes in spine density. Our work reveals distinct forms of structural plasticity in the olfactory bulb tailored to the complexity of odor-learning paradigms and sensory inputs.


Assuntos
Odorantes , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/fisiologia , Interneurônios/fisiologia , Aprendizagem , Neurônios/fisiologia
2.
Stem Cell Reports ; 17(4): 911-923, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35303437

RESUMO

Neuronal migration is a highly dynamic process, and multiple cell movement metrics can be extracted from time-lapse imaging datasets. However, these parameters alone are often insufficient to evaluate the heterogeneity of neuroblast populations. We developed an analytical pipeline based on reducing the dimensions of the dataset by principal component analysis (PCA) and determining sub-populations using k-means, supported by the elbow criterion method and validated by a decision tree algorithm. We showed that neuroblasts derived from the same adult neural stem cell (NSC) lineage as well as across different lineages are heterogeneous and can be sub-divided into different clusters based on their dynamic properties. Interestingly, we also observed overlapping clusters for neuroblasts derived from different NSC lineages. We further showed that genetic perturbations or environmental stimuli affect the migratory properties of neuroblasts in a sub-cluster-specific manner. Our data thus provide a framework for assessing the heterogeneity of migrating neuroblasts.


Assuntos
Células-Tronco Neurais , Neurônios , Movimento Celular/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Imagem com Lapso de Tempo
3.
Neurobiol Dis ; 161: 105561, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34780863

RESUMO

Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Encéfalo/metabolismo , COVID-19/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Pericitos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Actinas/metabolismo , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , Encéfalo/irrigação sanguínea , COVID-19/fisiopatologia , Sinalização do Cálcio , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Humanos , Hipóxia-Isquemia Encefálica/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miofibroblastos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Mucosa Nasal , Estresse Nitrosativo , Estresse Oxidativo , Pericitos/citologia , Pericitos/efeitos dos fármacos , Fenótipo , Receptor Notch3/metabolismo , Receptores de Coronavírus/efeitos dos fármacos , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia
4.
EJNMMI Phys ; 7(1): 33, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430671

RESUMO

BACKGROUND: Targeted radionuclide therapy (TRT) is gaining importance. For TRT to be also used as adjuvant therapy or for treating minimal residual disease, there is a need to increase the radiation dose to small tumours. The aim of this in silico study was to compare the performances of 161Tb (a medium-energy ß- emitter with additional Auger and conversion electron emissions) and 177Lu for irradiating single tumour cells and micrometastases, with various distributions of the radionuclide. METHODS: We used the Monte Carlo track-structure (MCTS) code CELLDOSE to compute the radiation doses delivered by 161Tb and 177Lu to single cells (14 µm cell diameter with 10 µm nucleus diameter) and to a tumour cluster consisting of a central cell surrounded by two layers of cells (18 neighbours). We focused the analysis on the absorbed dose to the nucleus of the single tumoral cell and to the nuclei of the cells in the cluster. For both radionuclides, the simulations were run assuming that 1 MeV was released per µm3 (1436 MeV/cell). We considered various distributions of the radionuclides: either at the cell surface, intracytoplasmic or intranuclear. RESULTS: For the single cell, the dose to the nucleus was substantially higher with 161Tb compared to 177Lu, regardless of the radionuclide distribution: 5.0 Gy vs. 1.9 Gy in the case of cell surface distribution; 8.3 Gy vs. 3.0 Gy for intracytoplasmic distribution; and 38.6 Gy vs. 10.7 Gy for intranuclear location. With the addition of the neighbouring cells, the radiation doses increased, but remained consistently higher for 161Tb compared to 177Lu. For example, the dose to the nucleus of the central cell of the cluster was 15.1 Gy for 161Tb and 7.2 Gy for 177Lu in the case of cell surface distribution of the radionuclide, 17.9 Gy for 161Tb and 8.3 Gy for 177Lu for intracytoplasmic distribution and 47.8 Gy for 161Tb and 15.7 Gy for 177Lu in the case of intranuclear location. CONCLUSION: 161Tb should be a better candidate than 177Lu for irradiating single tumour cells and micrometastases, regardless of the radionuclide distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...