Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337308

RESUMO

The development of polymeric biocomposites containing natural fibers has grown over the years due to the properties achieved and its eco-friendly nature. Thus, biocomposites involving a polymer from a renewable source (Biopolyethylene (BioPE)) and babassu fibers (BFs), compatibilized with polyethylene grafted with maleic anhydride (MA) and acrylic acid (AA) (PE-g-MA and PE-g-AA, respectively) were obtained using melt mixing and injection molded into tensile, impact, and HDT specimens. Babassu fiber was characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TGA), and scanning electron microscopy (SEM). The biocomposites were characterized using torque rheometry, TGA, tensile strength, impact strength, thermomechanical properties, Shore D hardness, and SEM. The data indicate that the torque during the processing of compatibilized biocomposites was higher than that of BioPE/BF biocomposites, which was taken as an indication of a possible reaction between the functional groups. Compatibilization led to a substantial improvement in the elastic modulus, tensile strength, HDT, and VST and a decrease in Shore D hardness. These results were justified with SEM micrographs, which showed babassu fibers better adhered to the surface of the biopolyethylene matrix, as well as an encapsulation of these fibers. The system investigated is environmentally sustainable, and the results are promising for the technology of polymeric composites.

2.
Polymers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631490

RESUMO

In this work, blends based on poly (lactic acid) (PLA)/acrylonitrile-butadiene-styrene (ABS) compatibilized with maleic anhydride-grafted (SEBS-g-MA) were prepared in a co-rotational twin-screw extruder by varying the concentrations of the compatibilizing agent. The influence of the compatibilizing agent on the morphology, mechanical, thermal, thermomechanical, and rheological properties of the prepared materials was analyzed. The effect of annealing on the properties of the blends was also investigated using injection-molded samples. The X-ray diffraction (XRD) results proved that the increments in crystallinity were an effect of annealing in the PLA/ABS/SEBS-g-MA blends, resonating at higher heat deflection temperatures (HDTs). The impact strength of the PLA/ABS blends compatibilized with 10 wt% SEBS-g-MA was significantly increased when compared to the PLA/ABS blends. However, the hardness and elastic modulus of the blends decreased when compared to neat PLA. The refined morphology shown in the scanning electron microscopy (SEM) analyses corroborated the improved impact strength promoted by SEBS-g-MA. The torque rheometer degradation study also supported the increased compatibility between SEBS-g-MA, PLA, and ABS. The TGA results show that the PLA/ABS and PLA/ABS/SEBS-g-MA blends are more thermally stable than the neat PLA polymer at higher temperatures. The results showed that the ideal composition is the heat-treated PLA/ABS/SEBS-g-MA (60/30/10 wt%), given the high impact strength and HDT results. The results of this work in terms of mechanical improvement with the use of compatibilizers and annealing suggest that the PLA/ABS/SEBS-g-MA system can be used in the production of 3D-printing filaments.

3.
Polymers (Basel) ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35012156

RESUMO

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...