Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935152

RESUMO

PURPOSE: We tested the hypothesis that heat stress influences the closed-loop cardio-postural control by an increased blood pressure (BP) drop and postural sway. METHODS: Fourteen healthy individuals (eight women) performed two orthostatic tests under thermal reference (TC; ~ 24 ºC) and HOT (~ 38 ºC) conditions. The center-of-pressure (COP) displacements and the electromyography (EMG) activity of the calf muscles (medial gastrocnemius and tibialis anterior) were recorded during the initial orthostasis (ORT onset) after the supine-to-stand challenge. At the same period, BP (beat-to-beat) was continuously monitored, and supine-to-stand variations (∆%) were calculated. Sublingual temperature (Tsl) was measured as a surrogate of internal temperature. RESULTS: Tsl increased in HOT compared to TC (TC 36.5 ± 0.3 vs. HOT 36.7 ± 0.3 ºC; p < 0.01). COP distance was greater in HOT compared to TC condition (TC 596.6 ± 242.4 vs. HOT 680.2 ± 249.1 mm; p < 0.01). EMG activity of the gastrocnemius decreased in HOT compared to TC condition (TC 95.5 ± 19.8 vs. HOT 78.4 ± 22.8%mV; p = 0.02). EMG of tibialis did not change between TC and HOT (TC 83.5 ± 42.9 vs. HOT 66.1 ± 31.9% mV; p = 0.29). BP showed a greater fall in HOT compared to TC condition (∆%TC - 24.5 ± 13.2 vs. ∆%HOT - 33.2 ± 20.2%; p = 0.01). CONCLUSION: Heat stress causes a greater fall in blood pressure and a reduction in musculoskeletal pump activity during orthostatic onset. These effects could be potential mechanisms that underlie augmented postural instability under a heated environment.

2.
Physiol Meas ; 44(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343372

RESUMO

Objective.To conduct a systematic review of the possible effects of passive heating protocols on cardiovascular autonomic control in healthy individuals.Approach.The studies were obtained from MEDLINE (PubMed), LILACS (BVS), EUROPE PMC (PMC), and SCOPUS databases, simultaneously. Studies were considered eligible if they employed passive heating protocols and investigated cardiovascular autonomic control by spontaneous methods, such as heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), in healthy adults. The revised Cochrane risk-of-bias tool (RoB-2) was used to assess the risk of bias in each study.Main results.Twenty-seven studies were included in the qualitative synthesis. Whole-body heating protocols caused a reduction in cardiac vagal modulation in 14 studies, and two studies reported both increased sympathetic modulation and vagal withdrawal. Contrariwise, local-heating protocols and sauna bathing seem to increase cardiac vagal modulation. A reduction of BRS was reported in most of the studies that used whole-body heating protocols. However, heating effects on BRS remain controversial due to methodological differences among baroreflex analysis and heating protocols.Significance.Whole-body heat stress may increase sympathetic and reduce vagal modulation to the heart in healthy adults. On the other hand, local-heating therapy and sauna bathing seem to increase cardiac vagal modulation, opposing sympathetic modulation. Nonetheless, further studies should investigate acute and chronic effects of thermal therapy on cardiovascular autonomic control.


Assuntos
Sistema Nervoso Autônomo , Sistema Cardiovascular , Hipertermia Induzida , Adulto , Humanos , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Autônomo/fisiopatologia , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Sistema Cardiovascular/inervação , Sistema Cardiovascular/fisiopatologia , Coração/inervação , Coração/fisiologia , Frequência Cardíaca/fisiologia , Temperatura Alta/efeitos adversos , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/métodos
3.
Physiol Meas ; 42(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34261052

RESUMO

Objective.To investigate the interplay between active standing and heat stress on cardiovascular autonomic modulation in healthy individuals.Approach.Blood pressure (BP) and ECG were continuously recorded during 30 min in supine (SUP) and 6 min in orthostatic position (ORT) under thermal reference (TC; ∼24 °C) or heated environment (HOT; ∼36 °C) conditions, in a randomized order. All data collection was performed during the winter and spring seasons when typical outdoor temperatures are ∼23 °C. Spectral analysis was employed by the autoregressive model of R-R and systolic blood pressure (SBP) time series and defined, within each band, in low (LF, 0.04 to 0.15 Hz) and high (0.15-0.40 Hz) frequencies. The indices of cardiac sympathetic (LF) and cardiac parasympathetic (HF) were normalized (nu) dividing each band power by the total power subtracted the very-low component (<0.04 Hz), obtaining the cardiac autonomic balance (LF/HF) modulation. The gain of the relationship between SBP and R-R variabilities within the LF band was utilized for analysis of spontaneous baroreflex sensitivity (alpha index;αLF). Nonlinear analysis was employed through symbolic dynamics of R-R, which provided the percentage of sequences of three heart periods without changes in R-R interval (0V%; cardiac sympathetic modulation) and two significant variations (2UV% and 2LV%; cardiac vagal modulation).Main results.HOT increased 0V% and HR, and decreasedαLF and 2UV% during SUP compared to TC. During ORT, HOT provokes a greater increment on HR, LF/HF and 0V%, indexes compared to ORT under TC.Significance.At rest, heat stress influences both autonomic branches, increasing sympathetic and decreasing vagal modulation and spontaneous baroreflex sensitivity. The augmented HR during active standing under heat stress seems to be mediated by a greater increment in cardiac sympathetic modulation, showing an interplay between gravitational and thermal stimulus.


Assuntos
Sistema Nervoso Autônomo , Sistema Cardiovascular , Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...