RESUMO
Photodynamic therapy is a minimally invasive health technology used to treat cancer and other non-malignant diseases, as well as inactivation of viruses, bacteria and fungi. In this work, we sought to combine the phototherapy technique using low intensity LED (660â¯nm) to induce ablation in melanoma tumor in mice treated with nanoparticles. In vitro and in vivo studies were conducted, and our results demonstrated that multi-walled carbon nanotubes (MWCNTs) do not destroy tumor cells in vivo, but stimulate the inflammatory process and angiogenesis. Reduced graphene oxide (rGO), has been shown to play a protective role associated with the LED ablation, inducing necrosis, stimulation of immune response by lymphoproliferation, and decreased tumor mass in vivo. We consider that LED alone can be very effective in controlling the growth of melanoma tumors and its association with rGO is potentiated.
Assuntos
Grafite/química , Melanoma/terapia , Nanotubos de Carbono/química , Animais , Camundongos , FotoquimioterapiaRESUMO
Many studies have shown that silver nanoparticles (AgNP) induce oxidative stress, and it is commonly assumed that this is the main mechanism of AgNP cytotoxicity. Most of these studies rely on antioxidants to establish this cause-and-effect relationship; nevertheless, details on how these antioxidants interact with the AgNP are often overlooked. This work aimed to investigate the molecular mechanisms underlying the use of antioxidants with AgNP nanoparticles. Thus, we studied the molecular interaction between the thiol-antioxidants (N-acetyl-L-Cysteine, L-Cysteine, and glutathione) or non-thiol-antioxidants (Trolox) with chemically and biologically synthesized AgNP. Both antioxidants could mitigate ROS production in Huh-7 hepatocarcinoma cells, but only thiol-antioxidants could prevent the cytotoxic effect, directly binding to the AgNP leading to aggregation. Our findings show that data interpretation might not be straightforward when using thiol-antioxidants to study the interactions between metallic nanoparticles and cells. This artifact exemplifies potential pitfalls that could hinder the progress of nanotechnology and the understanding of the nanotoxicity mechanism.
Assuntos
Antioxidantes/química , Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/química , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Nanotecnologia/métodos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/químicaRESUMO
This study describes the effects of a promising therapeutic alternative for non-muscle invasive bladder cancer (NMIBC) based on Bacillus Calmette-Guerin (BCG) intravesical immunotherapy combined with Platelet-rich plasma (PRP) in an animal model. Furthermore, this study describes the possible mechanisms of this therapeutic combination involving Toll-like Receptors (TLRs) 2 and 4 signaling pathways. NMIBC was induced by treating female Fischer 344 rats with N-methyl-N-nitrosourea (MNU). After treatment with MNU, the animals were distributed into four experimental groups: Control (without MNU) group, MNU (cancer) group, MNUâ¯+â¯PRP group, MNUâ¯+â¯BCG group and MNUâ¯+â¯PRPâ¯+â¯BCG group. Our results demonstrated that PRP treatment alone or associated with BCG triggered significant cytotoxicity in bladder carcinoma cells (HTB-9). Animals treated with PRP associated to BCG clearly showed better histopathological recovery from the cancer state and decrease of urothelial neoplastic lesions progression in 70% of animals when compared to groups that received the same therapies administered singly. In addition, this therapeutic association led to distinct activation of immune system TLRs 2 and 4-mediated, resulting in increased MyD88, TRIF, IRF3, IFN-γ immunoreactivities. Taken together, the data obtained suggest that interferon signaling pathway activation by PRP treatment in combination with BCG immunotherapy may provide novel therapeutic approaches for non-muscle invasive bladder cancer.
Assuntos
Carcinoma de Células de Transição/patologia , Mycobacterium bovis , Plasma Rico em Plaquetas , Neoplasias da Bexiga Urinária/patologia , Animais , Feminino , Humanos , Sistema Imunitário/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344RESUMO
BACKGROUND: Improved gait efficiency is one of the goals of therapy for children with cerebral palsy (CP). Postural insoles can allow more efficient gait by improving biomechanical alignment. OBJECTIVE: The aim of the present study was to determine the effect of the combination of postural insoles and ankle-foot orthoses on static and functional balance in children with CP. METHOD: A randomized, controlled, double-blind, clinical trial. After meeting legal requirements and the eligibility criteria, 20 children between four and 12 years of age were randomly allocated either to the control group (CG) (n=10) or the experimental group (EG) (n=10). The CG used placebo insoles and the EG used postural insoles. The Berg Balance Scale, Timed Up-and-Go Test, Six-Minute Walk Test, and Gross Motor Function Measure-88 were used to assess balance as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. Three evaluations were carried out: 1) immediately following placement of the insoles; 2) after three months of insole use; and 3) one month after suspending insole use. RESULTS: The EG achieved significantly better results in comparison to the CG on the Timed Up-and-Go Test as well as body sway in the anteroposterior and mediolateral directions. CONCLUSION: Postural insoles led to an improvement in static balance among children with cerebral palsy, as demonstrated by the reduction in body sway in the anteroposterior and mediolateral directions. Postural insole use also led to a better performance on the Timed Up-and-Go Test.
Assuntos
Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/reabilitação , Órtoses do Pé , Marcha , Equilíbrio Postural , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Masculino , Estudos ProspectivosRESUMO
BACKGROUND: Improved gait efficiency is one of the goals of therapy for children with cerebral palsy (CP). Postural insoles can allow more efficient gait by improving biomechanical alignment. OBJECTIVE: The aim of the present study was to determine the effect of the combination of postural insoles and ankle-foot orthoses on static and functional balance in children with CP. METHOD: A randomized, controlled, double-blind, clinical trial. After meeting legal requirements and the eligibility criteria, 20 children between four and 12 years of age were randomly allocated either to the control group (CG) (n=10) or the experimental group (EG) (n=10). The CG used placebo insoles and the EG used postural insoles. The Berg Balance Scale, Timed Up-and-Go Test, Six-Minute Walk Test, and Gross Motor Function Measure-88 were used to assess balance as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. Three evaluations were carried out: 1) immediately following placement of the insoles; 2) after three months of insole use; and 3) one month after suspending insole use. RESULTS: The EG achieved significantly better results in comparison to the CG on the Timed Up-and-Go Test as well as body sway in the anteroposterior and mediolateral directions. CONCLUSION: Postural insoles led to an improvement in static balance among children with cerebral palsy, as demonstrated by the reduction in body sway in the anteroposterior and mediolateral directions. Postural insole use also led to a better performance on the Timed Up-and-Go Test. .