Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 944: 173918, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866151

RESUMO

Per- and polyfluoroalkyl substances (PFAS), often referred to as "forever chemicals", are a class of man-made, extremely stable chemicals, which are widely used in industrial and commercial applications. Exposure to some PFAS is now known to be detrimental to human health. By virtue of PFAS long residence times, they are widely detected in the environment, including remote locations such as the Arctics, where the origin of the PFAS is poorly understood. It has been suggested that PFAS may be transported through contaminated waters, leading to accumulation in coastal areas, where they can be aerosolised via sea spray, thereby extending their geographical distribution far beyond their original source regions. The aim of this work is to investigate, for the first time, whether "forever chemicals" could be transported to areas considered to be pristine, far from coastal sites. This study was performed at the Amazonian Tall Tower Observatory (ATTO), a unique remote site situated in the middle of the Amazon rainforest, where a restricted PFAS, perfluorooctanoic acid (PFOA), was observed with concentrations reaching up to 2 pg/m3. A clear trend of increasing concentration with sampling height was observed and air masses from the south over Manaus had the highest concentrations. Atmospheric lifetime estimations, removal mechanisms supported by measurements at two heights (320 and 42 m above the rainforest), and concentration spikes indicated a long-range transport of PFOA to pristine Amazon rainforest. Potential sources, including industrial activities in urban areas, were explored, and historical fire management practices considered. This research presents the first measurements of PFAS in the atmosphere of Amazon rainforest. Remarkably, even in this remote natural environment, appreciable levels of PFAS can be detected. This study provides valuable insights into the long-range transport of the anthropogenic "forever chemical" into a remote natural ecosystem and should raise awareness of potential environmental implications.


Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Fluorocarbonos , Poluentes Atmosféricos/análise , Fluorocarbonos/análise , Atmosfera/química , Brasil , Caprilatos/análise , Floresta Úmida
2.
Sci Rep ; 10(1): 9454, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528124

RESUMO

Forest ecosystems sequester large amounts of atmospheric CO2, and the contribution from seasonally dry tropical forests is not negligible. Thus, the objective of this study was to quantify and evaluate the seasonal and annual patterns of CO2 exchanges in the Caatinga biome, as well as to evaluate the ecosystem condition as carbon sink or source during years. In addition, we analyzed the climatic factors that control the seasonal variability of gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem CO2 exchange (NEE). Results showed that the dynamics of the components of the CO2 fluxes varied depending on the magnitude and distribution of rainfall and, as a consequence, on the variability of the vegetation state. Annual cumulative NEE was significantly higher (p < 0.01) in 2014 (-169.0 g C m-2) when compared to 2015 (-145.0 g C m-2) and annual NEP/GPP ratio was 0.41 in 2014 and 0.43 in 2015. Global radiation, air and soil temperature were the main factors associated with the diurnal variability of carbon fluxes. Even during the dry season, the NEE was at equilibrium and the Caatinga acted as an atmospheric carbon sink during the years 2014 and 2015.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...