Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 121(11): 3203-3215, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36056960

RESUMO

Espinilho savanna ("seasonal steppe savanna") is a unique vegetation formation of the Pampas biome that is found near the tri-border of Brazil, Uruguay, and Argentina. The Yellow Cardinal (Gubernatrix cristata) is a flagship species of this ecosystem, but it is classified as "critically endangered" in Brazil due to habitat loss and poaching for the illegal trade. Population supplementation through the release of individuals that were captive-bred or apprehended by authorities from the illegal trade has been considered as a conservation strategy for this species; however, the risk of pathogen introduction is a critical concern. We used microscopy and molecular methods to investigate the occurrence of blood parasites in wild passerines (n = 64, including three Yellow Cardinals) at Espinilho State Park, Rio Grande do Sul, Brazil, and in captive Yellow Cardinals (n = 30) at three facilities in Brazil. Haemosporidian parasites were detected in the blood smears of 10.9% of the wild passerines, comprising the morphospecies Haemoproteus erythrogravidus in Rufous-collared Sparrow (Zonotrichia capensis), H. quiscalus in Grayish Baywing (Agelaioides badius), and H. tyranni in Great Kiskadee (Pitangus sulphuratus); these are the southernmost records for these morphospecies and their first record for the Pampas biome. No haemosporidian parasites were detected in the blood smears of the Yellow Cardinals, wild or captive. Microfilariae were detected in the blood smears of 14.1% of the wild passerines, including all wild Yellow Cardinals, and in 43.3% of captive Yellow Cardinals. Trypanosoma sp. was detected in the blood smear of one captive Yellow Cardinal. Nested PCR and gene sequencing of the cyt-b gene of Haemoproteus/Plasmodium was used to test a subset of wild passerines and captive Yellow Cardinals, allowing for the molecular barcoding of H. quiscalus lineage AGEBAD04 and H. tyranni lineage PITSUL01; additionally, DNA identical to that of lineage PITSUL01 was detected in the blood of one captive Yellow Cardinal. This study provides valuable data to support the conservation management of the Yellow Cardinal and other threatened passerines from the Pampas and highlights the need for further studies on the epidemiology and pathology of filarioid worms and trypanosomes in passerines from this biome.


Assuntos
Doenças das Aves , Haemosporida , Lepidópteros , Parasitos , Infecções Protozoárias em Animais , Pardais , Animais , Doenças das Aves/parasitologia , Brasil , Suplementos Nutricionais , Ecossistema , Haemosporida/genética , Parasitos/genética , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
2.
Parasitol Res ; 118(12): 3497-3508, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720833

RESUMO

Avian malaria is a mosquito-borne disease caused by Plasmodium spp. protozoa, and penguins are considered particularly susceptible to this disease, developing rapid outbreaks with potentially high mortality. We report on an outbreak of avian malaria in Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center in Espírito Santo, southeast Brazil. In August and September 2015, a total of 89 Magellanic penguins (87 juveniles and 2 adults) received care at Institute of Research and Rehabilitation of Marine Animals. Over a period of 2 weeks, Plasmodium infections were identified in eight individuals (9.0%), four of which died (mortality = 4.5%, lethality = 50%). Blood smears and sequencing of the mitochondrial cytochrome b gene revealed the presence of Plasmodium lutzi SPMAG06, Plasmodium elongatum GRW06, Plasmodium sp. PHPAT01, Plasmodium sp. SPMAG10, and Plasmodium cathemerium (sequencing not successful). Two unusual morphological features were observed in individuals infected with lineage SPMAG06: (a) lack of clumping of pigment granules and (b) presence of circulating exoerythrocytic meronts. Hematological results (packed cell volume, plasma total solids, complete blood cell counts) of positive individuals showed differences from those of negative individuals depending on the lineages, but there was no overarching pattern consistently observed for all Plasmodium spp. The epidemiology of the outbreak and the phylogeography of the parasite lineages detected in this study support the notion that malarial infections in penguins undergoing rehabilitation in Brazil are the result of the spillover inoculation by plasmodia that circulate in the local avifauna, especially Passeriformes.


Assuntos
Doenças das Aves/parasitologia , Malária Aviária/parasitologia , Plasmodium/crescimento & desenvolvimento , Spheniscidae/parasitologia , Animais , Doenças das Aves/sangue , Doenças das Aves/epidemiologia , Brasil/epidemiologia , Surtos de Doenças , Feminino , Hematologia , Malária Aviária/sangue , Malária Aviária/epidemiologia , Masculino , Filogenia , Plasmodium/classificação , Plasmodium/genética , Plasmodium/isolamento & purificação
3.
Acta Trop ; 188: 93-100, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30171836

RESUMO

Haemosporidian parasites of the genus Haemoproteus are widespread and can cause disease and even mortality in birds under natural and captive conditions. The Black-fronted Piping-guan (Aburria jacutinga) is an endangered Neotropical bird of the Cracidae (Galliformes) going through a reintroduction program to avoid extinction. We used microscopic examination and partial cytochrome b DNA sequencing to describe a new Haemoproteus species infecting Black-fronted Piping-guans bred and raised in captivity that were reintroduced into the Atlantic rainforest. Haemoproteus (Parahaemoproteus) paraortalidum n. sp. was detected in the blood of 19 out of 29 examined birds. The new species is distinguished from other haemoproteids due to the shape of gametocytes, which have pointed ends in young stages, and due to the presence of vacuole-like unstained spaces in macrogametocytes and numerous volutin granules both in macro- and microgametocytes. Illustrations of the new species are provided. Phylogenetic inference positioned this parasite in the Parahaemoproteus subgenus clade together with the other two Haemoproteus genetic lineages detected in cracids up to date. We discuss possible implications of the reintroduction of birds infected with haemosporidian parasites into the wild. Treatment of Haemoproteus infections remains insufficiently studied, but should be considered for infected birds before reintroduction to improve host reproductive and survival rates after release.


Assuntos
Galliformes/parasitologia , Haemosporida/classificação , Animais , Citocromos b/genética , Haemosporida/genética , Haemosporida/isolamento & purificação , Filogenia , Prevalência , Infecções Protozoárias em Animais/parasitologia
4.
Parasitology ; 145(14): 1949-1958, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29739479

RESUMO

Habitat modification may facilitate the emergence of novel pathogens, and the expansion of agricultural frontiers make domestic animals important sources of pathogen spillover to wild animals. We demonstrate for the first time that Plasmodium juxtanucleare, a widespread parasite from domestic chickens, naturally infects free-living passerines. We sampled 68 wild birds within and at the border of conservation units in central Brazil composed by Cerrado, a highly threatened biome. Seven out of 10 passerines captured in the limits of a protected area with a small farm were infected by P. juxtanucleare as was confirmed by sequencing a fragment of the parasite's cytochrome b. Blood smears from these positive passerines presented trophozoites, meronts and gametocytes compatible with P. juxtanucleare, meaning these birds are competent hosts for this parasite. After these intriguing results, we sampled 30 backyard chickens managed at the area where P. juxtanucleare-infected passerines were captured, revealing one chicken infected by the same parasite lineage. We sequenced the almost complete mitochondrial genome from all positive passerines, revealing that Brazilian and Asian parasites are closely related. P. juxtanucleare can be lethal to non-domestic hosts under captive and rehabilitation conditions, suggesting that this novel spillover may pose a real threat to wild birds.


Assuntos
Animais Domésticos/parasitologia , Galinhas/parasitologia , Columbidae/parasitologia , Malária Aviária/transmissão , Plasmodium/patogenicidade , Animais , Brasil , Citocromos b/genética , Ecossistema , Fazendas , Genoma Mitocondrial , Filogenia
5.
PLoS One ; 12(6): e0178791, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575046

RESUMO

Habitat modification may change vertebrate and vector-borne disease distributions. However, natural forest regeneration through secondary succession may mitigate these effects. Here we tested the hypothesis that secondary succession influences the distribution of birds and their haemosporidian parasites (genera Plasmodium and Haemoproteus) in a seasonally dry tropical forest, a globally threatened ecosystem, in Brazil. Moreover, we assessed seasonal fluctuations in parasite prevalence and distribution. We sampled birds in four different successional stages at the peak and end of the rainy season, as well as in the middle and at the end of the dry season. A non-metric multidimensional scaling analysis revealed that bird communities in the pasture (i.e., highly modified) areas were different from those in the early, intermediate, and late successional areas (secondary forests). Among 461 individual birds, haemosporidian prevalence was higher in pasture areas than in the more advanced successional stages, but parasite communities were homogeneous across these areas. Parasite prevalence was higher in pasture-specialists birds (resilient species) than in forest-specialists species, suggesting that pasture-specialists may increase infection risk for co-occurring hosts. We found an increase in prevalence between the middle and end of the dry season, a period associated with the beginning of the breeding season (early spring) in southeastern Brazil. We also found effects of seasonality in the relative prevalence of specific parasite lineages. Our results show that natural forest recovery through secondary succession in SDTFs is associated with compositional differences in avian communities, and that advanced successional stages are associated with lower prevalence of avian haemosporidian parasites.


Assuntos
Aves/parasitologia , Ecossistema , Haemosporida/parasitologia , Interações Hospedeiro-Parasita , Estações do Ano , Animais , Brasil
6.
Int J Parasitol Parasites Wildl ; 4(2): 198-205, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25853053

RESUMO

Blood parasites are potential threats to the health of penguins and to their conservation and management. Little penguins Eudyptula minor are native to Australia and New Zealand, and are susceptible to piroplasmids (Babesia), hemosporidians (Haemoproteus, Leucocytozoon, Plasmodium) and kinetoplastids (Trypanosoma). We studied a total of 263 wild little penguins at 20 sites along the Australian southeastern coast, in addition to 16 captive-bred little penguins. Babesia sp. was identified in seven wild little penguins, with positive individuals recorded in New South Wales, Victoria and Tasmania. True prevalence was estimated between 3.4% and 4.5%. Only round forms of the parasite were observed, and gene sequencing confirmed the identity of the parasite and demonstrated it is closely related to Babesia poelea from boobies (Sula spp.) and B. uriae from murres (Uria aalge). None of the Babesia-positive penguins presented signs of disease, confirming earlier suggestions that chronic infections by these parasites are not substantially problematic to otherwise healthy little penguins. We searched also for kinetoplastids, and despite targeted sampling of little penguins near the location where Trypanosoma eudyptulae was originally reported, this parasite was not detected.

7.
PLoS One ; 9(4): e94994, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736326

RESUMO

Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28) of the penguins, including Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) elongatum, a Plasmodium (Haemamoeba) sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus) sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18) of the hemosporidian-infected penguins, and in 89% (8/9) of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba) sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28) penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to prevent avian malaria outbreaks to the penguins that are maintained throughout summer.


Assuntos
Malária Aviária/parasitologia , Plasmodium , Spheniscidae/parasitologia , Animais , Brasil/epidemiologia , Citocromos b/genética , DNA de Protozoário , Surtos de Doenças , Genes Mitocondriais , Malária Aviária/epidemiologia , Parasitemia/parasitologia , Filogenia , Plasmodium/classificação , Plasmodium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...