Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(44): 15223-15230, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36302263

RESUMO

Combining spectroscopic techniques with electrochemistry is a promising strategy, as it allows the detailed investigation of the species that are consumed and produced by the reaction in real time. However, as with any in situ coupling technique, the junction between NMR and electrochemistry presents some challenges, notably the distortion of NMR signals due to the placement of electrodes close to or within the detection region. In this work, miniaturized electrodes made of carbon fiber paper were developed and later modified with platinum. Platinum decoration by cathodic deposition was chosen, as platinum is a prominent element in electrocatalysis, able to catalyze a large variety of reactions. To evaluate the efficiency of this electrochemical system, the oxidation of ascorbic acid was used as a model reaction. It was observed that the electrodes caused substantial signal distortion when placed within the detection region (full width at half-maximum equal to 1.46 Hz), whereas no distortion was observed when the electrodes were placed 1 mm above the detection region (full width at half-maximum equal to 0.95 Hz). With this system, it was also possible to monitor the magnetoelectrolysis effect, caused by the interaction of the magnetic field with the flowing ions, leading to a doubling of the ascorbic acid oxidation rate, compared to the reaction performed without a magnetic field. In addition to its low cost and simplicity in preparation, the developed electrode system allows the electrode surface to be easily modified with other suitable catalysts.


Assuntos
Ácido Ascórbico , Platina , Microeletrodos , Fibra de Carbono , Platina/química , Eletrodos , Eletroquímica , Oxirredução , Carbono/química
2.
ACS Omega ; 7(6): 4991-5000, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187316

RESUMO

The in situ coupling between electrochemistry and spectrometric techniques can help in the identification and quantification of the compounds produced and consumed during electrochemical reactions. The combination of electrochemistry with nuclear magnetic resonance is quite attractive in this respect, but it has some challenges to be addressed, namely, the reduction in the quality of the NMR signal when the metallic electrodes are placed close to or in the detection region. Since NMR is not a passive technique, the convective effect of the magnetic force (magnetoelectrolysis), which acts by mixing the solution and increasing the mass transport, has to be considered. In seeking to solve the aforementioned problems, we developed a system of miniaturized electrodes inside a 5 mm NMR tube (outer diameter); the working and counter electrodes were prepared with a mixture of graphite powder and epoxy resin. To investigate the performance of the electrodes, the benzoquinone reduction to hydroquinone and the isopropanol oxidation to acetone were monitored. To monitor the alcohol oxidation reaction, the composite graphite-epoxy electrode (CGEE) surface was modified through platinization. The electrode was efficient for in situ monitoring of the aforementioned reactions, when positioned 1 mm above the detection region of the NMR spectrometer. The magnetoelectrolysis effect acts by stirring the solution and increases the reaction rate of the reduction of benzoquinone, because this reaction is limited by mass transport, while no effect on the reaction rate is observed for the isopropanol oxidation reaction.

3.
Anal Chim Acta ; 983: 91-95, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28811033

RESUMO

The strong effect of magnetic field on the electrochemical (EC) reduction of a diamagnetic species was monitored in situ in a 600 MHz (14 T) NMR spectrometer. Throughout EC-NMR experiments, the diamagnetic species is influenced by the Lorentz force (cross product of current density and magnetic field), which in turn acts on analyte transport and, as a result, enhances reaction rates. This phenomenon, known as magnetoelectrolysis, has not been considered in several in situ EC-NMR studies in solution, electron paramagnetic resonance (EC-EPR) spectroscopy, and magnetic resonance imaging (EC-MRI) involving the oxidation and reduction of organic compounds and lithium ion batteries. Recently, we have demonstrated the presence of this effect in the electroplating of a paramagnetic ion species by monitoring it in situ in a low-field (0.23 T) NMR spectrometer. In this report, a ca. five-fold enhancement in the electroreduction rate of benzoquinone was observed when the analyses were performed in situ in the NMR spectrometer. Therefore, this work has the objective of informing the scientific community that before every electrochemical reaction carried out in situ in NMR, EPR and MRI apparatuses, the influence of the magnetic field on the reactions must be evaluated, since it can alter the mechanism and kinetics of the reaction which, if not taken into account may lead to wrong interpretations of the data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...