Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612073

RESUMO

The construction sector must incorporate the circular economy to improve sustainability and efficiency. The use of recycled aggregates (RAs) as a substitute for natural aggregates (NAs) is currently being investigated and is expected to yield considerable benefits in the future. The objective of this research is to evaluate the environmental and economic benefits of using recycled coarse aggregates (RCAs) in different 1 m3 samples of concrete, substituting the natural coarse aggregate (NCAs) with RCAs in different percentages. RCAs generally come from the treatment of construction and demolition wastes (CDWs). However, in this research, the RCAs are the concrete block wastes (CBWs) generated by a concrete production plant. Among the most notable results is that compared to concrete with no RCAs, using alternatives in which RCAs have replaced 50% of the NCAs leads to an average decrease in impact category statistics of -3.30%. In contrast to the existing literature on the subject, the process of producing RCAs generated efficiency improvements in categories such as abiotic depletion of fossil fuels (-58.72%) and global warming potential (-85.13%). This is because the transport process, a key factor in determining the viability of using RAs instead of NAs, was eliminated. In economic terms, there is a slight decrease in the financial cost of producing 1 m3 of concrete as the quantity of RCAs increases. The maximum decrease was 0.23€/m3 in the samples studied. Combining both the environmental and economic aspects resulted in a reduction factor of 0.420 g of CO2/€cent, which means fewer CO2 emissions per unit cost when using RCAs. In conclusion, these results are intended to further knowledge in the field of using RAs instead of NAs in order to help the sector achieve sustainability and find an alternative use for a particular type of business waste.

2.
Materials (Basel) ; 16(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687432

RESUMO

The use of fibres applied to concrete in order to improve its properties is widely known. Nowadays, research is not only focused on improving mechanical properties but also on the environmental implications. The aim of this research was a mechanical and environmental comparison between different types of fibres. For this purpose, commercial fibres of three materials were used: low carbon steel, modified polyolefins, and glass fibre. In order to improve the sustainability of the sector, we also analysed and compared the performance of using a waste product, such as fibres from machining operations on lathes. For the evaluation of the mechanical properties, compression and flexural tests were carried out. The results show that the use of low carbon steel fibres increases the flexural strength by 4.8%. At the environmental level, and in particular for impact categories such as the Global Warming Potential (GWP), lathe waste fibres prove to be the most suitable. For instance, compared to glass fibres, CO2 emissions are reduced by 14.39%. This is equivalent to a total of 38 kg CO2 emissions per m3 of reinforced concrete. In addition to avoiding the consumption of 482 MJ/m3 of fossil fuels, the results of the research indicate the feasibility of using waste fibres as a substitute for commercial fibres, contributing to an improved environmental balance without losing mechanical performance.

3.
Materials (Basel) ; 10(7)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28773183

RESUMO

The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

4.
Materials (Basel) ; 9(12)2016 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-28774084

RESUMO

In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...