Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Form Res ; 7: e41516, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939830

RESUMO

BACKGROUND: Deep learning offers great benefits in classification tasks such as medical imaging diagnostics or stock trading, especially when compared with human-level performances, and can be a viable option for classifying distinct levels within community-engaged research (CEnR). CEnR is a collaborative approach between academics and community partners with the aim of conducting research that is relevant to community needs while incorporating diverse forms of expertise. In the field of deep learning and artificial intelligence (AI), training multiple models to obtain the highest validation accuracy is common practice; however, it can overfit toward that specific data set and not generalize well to a real-world population, which creates issues of bias and potentially dangerous algorithmic decisions. Consequently, if we plan on automating human decision-making, there is a need for creating techniques and exhaustive evaluative processes for these powerful unexplainable models to ensure that we do not incorporate and blindly trust poor AI models to make real-world decisions. OBJECTIVE: We aimed to conduct an evaluation study to see whether our most accurate transformer-based models derived from previous studies could emulate our own classification spectrum for tracking CEnR studies as well as whether the use of calibrated confidence scores was meaningful. METHODS: We compared the results from 3 domain experts, who classified a sample of 45 studies derived from our university's institutional review board database, with those from 3 previously trained transformer-based models, as well as investigated whether calibrated confidence scores can be a viable technique for using AI in a support role for complex decision-making systems. RESULTS: Our findings reveal that certain models exhibit an overestimation of their performance through high confidence scores, despite not achieving the highest validation accuracy. CONCLUSIONS: Future studies should be conducted with larger sample sizes to generalize the results more effectively. Although our study addresses the concerns of bias and overfitting in deep learning models, there is a need to further explore methods that allow domain experts to trust our models more. The use of a calibrated confidence score can be a misleading metric when determining our AI model's level of competency.

2.
JMIR Form Res ; 7: e41137, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749611

RESUMO

BACKGROUND: Community-engaged research (CEnR) involves institutions of higher education collaborating with organizations in their communities to exchange resources and knowledge to benefit a community's well-being. While community engagement is a critical aspect of a university's mission, tracking and reporting CEnR metrics can be challenging, particularly in terms of external community relations and federally funded research programs. In this study, we aimed to develop a method for classifying CEnR studies that have been submitted to our university's institutional review board (IRB) to capture the level of community involvement in research studies. Tracking studies in which communities are "highly engaged" enables institutions to obtain a more comprehensive understanding of the prevalence of CEnR. OBJECTIVE: We aimed to develop an updated experiment to classify CEnR and capture the distinct levels of involvement that a community partner has in the direction of a research study. To achieve this goal, we used a deep learning-based approach and evaluated the effectiveness of fine-tuning strategies on transformer-based models. METHODS: In this study, we used fine-tuning techniques such as discriminative learning rates and freezing layers to train and test 135 slightly modified classification models based on 3 transformer-based architectures: BERT (Bidirectional Encoder Representations from Transformers), Bio+ClinicalBERT, and XLM-RoBERTa. For the discriminative learning rate technique, we applied different learning rates to different layers of the model, with the aim of providing higher learning rates to layers that are more specialized to the task at hand. For the freezing layers technique, we compared models with different levels of layer freezing, starting with all layers frozen and gradually unfreezing different layer groups. We evaluated the performance of the trained models using a holdout data set to assess their generalizability. RESULTS: Of the models evaluated, Bio+ClinicalBERT performed particularly well, achieving an accuracy of 73.08% and an F1-score of 62.94% on the holdout data set. All the models trained in this study outperformed our previous models by 10%-23% in terms of both F1-score and accuracy. CONCLUSIONS: Our findings suggest that transfer learning is a viable method for tracking CEnR studies and provide evidence that the use of fine-tuning strategies significantly improves transformer-based models. Our study also presents a tool for categorizing the type and volume of community engagement in research, which may be useful in addressing the challenges associated with reporting CEnR metrics.

3.
JMIR Form Res ; 6(9): e32460, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066925

RESUMO

BACKGROUND: Community-engaged research (CEnR) is a research approach in which scholars partner with community organizations or individuals with whom they share an interest in the study topic, typically with the goal of supporting that community's well-being. CEnR is well-established in numerous disciplines including the clinical and social sciences. However, universities experience challenges reporting comprehensive CEnR metrics, limiting the development of appropriate CEnR infrastructure and the advancement of relationships with communities, funders, and stakeholders. OBJECTIVE: We propose a novel approach to identifying and categorizing community-engaged studies by applying attention-based deep learning models to human participants protocols that have been submitted to the university's institutional review board (IRB). METHODS: We manually classified a sample of 280 protocols submitted to the IRB using a 3- and 6-level CEnR heuristic. We then trained an attention-based bidirectional long short-term memory unit (Bi-LSTM) on the classified protocols and compared it to transformer models such as Bidirectional Encoder Representations From Transformers (BERT), Bio + Clinical BERT, and Cross-lingual Language Model-Robustly Optimized BERT Pre-training Approach (XLM-RoBERTa). We applied the best-performing models to the full sample of unlabeled IRB protocols submitted in the years 2013-2019 (n>6000). RESULTS: Although transfer learning is superior, receiving a 0.9952 evaluation F1 score for all transformer models implemented compared to the attention-based Bi-LSTM (between 48%-80%), there were key issues with overfitting. This finding is consistent across several methodological adjustments: an augmented data set with and without cross-validation, an unaugmented data set with and without cross-validation, a 6-class CEnR spectrum, and a 3-class one. CONCLUSIONS: Transfer learning is a more viable method than the attention-based bidirectional-LSTM for differentiating small data sets characterized by the idiosyncrasies and variability of CEnR descriptions used by principal investigators in research protocols. Despite these issues involving overfitting, BERT and the other transformer models remarkably showed an understanding of our data unlike the attention-based Bi-LSTM model, promising a more realistic path toward solving this real-world application.

4.
J Clin Transl Sci ; 6(1): e6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154815

RESUMO

Community-engaged research (CEnR) is now an established research approach. The current research seeks to pilot the systematic and automated identification and categorization of CEnR to facilitate longitudinal tracking using administrative data. We inductively analyzed and manually coded a sample of Institutional Review Board (IRB) protocols. Comparing the variety of partnered relationships in practice with established conceptual classification systems, we developed five categories of partnership: Non-CEnR, Instrumental, Academic-led, Cooperative, and Reciprocal. The coded protocols were used to train a deep-learning algorithm using natural language processing to categorize research. We compared the results to data from three questions added to the IRB application to identify whether studies had a community partner and the type of engagement planned. The preliminary results show that the algorithm is potentially more likely to categorize studies as CEnR compared to investigator-recorded data and to categorize studies at a higher level of engagement. With this approach, universities could use administrative data to inform strategic planning, address progress in meeting community needs, and coordinate efforts across programs and departments. As scholars and technical experts improve the algorithm's accuracy, universities and research institutions could implement standardized reporting features to track broader trends and accomplishments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...