Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(21): 7873-7881, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37877553

RESUMO

DNA nanostructures have emerged as promising nanomedical tools due to their biocompatibility and tunable behavior. Recent work has shown that DNA nanocages decorated with organic dendrimers strongly bind human serum albumin (HSA), yet the dynamic structures of these complexes remain uncharacterized. This theoretical and computational investigation elucidates the fuzzy interactions between dendritically functionalized cubic DNA nanocages and HSA. The dendrimer-HSA interactions occur via nonspecific binding with the protein thermodynamically and kinetically free to cross the open faces of the cubic scaffold. However, the rigidity of the DNA scaffold prevents the binding energetics from scaling with the number of dendrimers. These discoveries not only provide a useful framework by which to model general interactions of DNA nanostructures complexed with serum proteins but also give valuable molecular insight into the design of next-generation DNA nanomedicines.


Assuntos
Dendrímeros , Nanoestruturas , Albumina Sérica Humana , Humanos , Dendrímeros/química , DNA/química , Nanoestruturas/química
2.
J Comput Aided Mol Des ; 37(3): 147-156, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840893

RESUMO

Molecules with bioactivity towards G protein-coupled receptors represent a subset of the vast space of small drug-like molecules. Here, we compare machine learning models, including dilated graph convolutional networks, that conduct binary classification to quickly identify molecules with activity towards G protein-coupled receptors. The models are trained and validated using a large set of over 600,000 active, inactive, and decoy compounds. The best performing machine learning model, dubbed GPCRLigNet, was a surprisingly simple feedforward dense neural network mapping from Morgan fingerprints to activity. Incorporation of GPCRLigNet into a high-throughput virtual screening workflow is demonstrated with molecular docking towards a particular G protein-coupled receptor, the pituitary adenylate cyclase-activating polypeptide receptor type 1. Through rigorous comparison of docking scores for molecules selected with and without using GPCRLigNet, we demonstrate an enrichment of potentially potent molecules using GPCRLigNet. This work provides a proof of principle that GPCRLigNet can effectively hone the chemical search space towards ligands with G protein-coupled receptor activity.


Assuntos
Aprendizado de Máquina , Receptores Acoplados a Proteínas G , Ligantes , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/química , Ensaios de Triagem em Larga Escala
3.
J Chem Theory Comput ; 18(6): 3921-3929, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35507824

RESUMO

Peptide binding to membranes is common and fundamental in biochemistry and biophysics and critical for applications ranging from drug delivery to the treatment of bacterial infections. However, it is largely unclear, from a theoretical point of view, what peptides of different sequences and structures share in the membrane-binding and insertion process. In this work, we analyze three prototypical membrane-binding peptides (α-helical magainin, PGLa, and ß-hairpin tachyplesin) during membrane binding, using molecular details provided by Markov state modeling and microsecond-long molecular dynamics simulations. By leveraging both geometric and data-driven collective variables that capture the essential physics of the amphiphilic and cationic peptide-membrane interactions, we reveal how the slowest kinetic process of membrane binding is the dynamic rolling of the peptide from an attached to a fully bound state. These results not only add fundamental knowledge of the theory of how peptides bind to biological membranes but also open new avenues to study general peptides in more complex environments for further applications.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Biofísica , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Magaininas/química , Magaininas/metabolismo , Conformação Proteica em alfa-Hélice
4.
Biophys J ; 120(14): 2848-2858, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34087207

RESUMO

Large-scale conformational transitions in the spike protein S2 domain are required during host-cell infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Although conventional molecular dynamics simulations have been extensively used to study therapeutic targets of SARS-CoV-2, it is still challenging to gain molecular insight into the key conformational changes because of the size of the spike protein and the long timescale required to capture these transitions. In this work, we have developed an efficient simulation protocol that leverages many short simulations, a dynamic selection algorithm, and Markov state models to interrogate the structural changes of the S2 domain. We discovered that the conformational flexibility of the dynamic region upstream of the fusion peptide in S2 is coupled to the proteolytic cleavage state of the spike protein. These results suggest that opening of the fusion peptide likely occurs on a submicrosecond timescale after cleavage at the S2' site. Building on the structural and dynamical information gained to date about S2 domain dynamics, we provide proof of principle that a small molecule bound to a seam neighboring the fusion peptide can slow the opening of the fusion peptide, leading to a new inhibition strategy for experiments to confirm. In aggregate, these results will aid the development of drug cocktails to inhibit infections caused by SARS-CoV-2 and other coronaviruses.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Peptídeos , SARS-CoV-2 , Internalização do Vírus
5.
J Chem Inf Model ; 61(5): 2198-2207, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33787250

RESUMO

Antibiotic resistance is a critical public health problem. Each year ∼2.8 million resistant infections lead to more than 35 000 deaths in the U.S. alone. Antimicrobial peptides (AMPs) show promise in treating resistant infections. However, applications of known AMPs have encountered issues in development, production, and shelf-life. To drive the development of AMP-based treatments, it is necessary to create design approaches with higher precision and selectivity toward resistant targets. Previously, we developed AMPGAN and obtained proof-of-concept evidence for the generative approach to design AMPs with experimental validation. Building on the success of AMPGAN, we present AMPGAN v2, a bidirectional conditional generative adversarial network (BiCGAN)-based approach for rational AMP design. AMPGAN v2 uses generator-discriminator dynamics to learn data-driven priors and controls generation using conditioning variables. The bidirectional component, implemented using a learned encoder to map data samples into the latent space of the generator, aids iterative manipulation of candidate peptides. These elements allow AMPGAN v2 to generate candidates that are novel, diverse, and tailored for specific applications, making it an efficient AMP design tool.


Assuntos
Aprendizado de Máquina , Peptídeos , Proteínas Citotóxicas Formadoras de Poros
6.
J Phys Chem Lett ; 11(21): 9501-9506, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108730

RESUMO

By integrating various simulation and experimental techniques, we discovered that antimicrobial peptides (AMPs) may achieve synergy at an optimal concentration and ratio, which can be caused by aggregation of the synergistic peptides. On multiple time and length scales, our studies obtain novel evidence of how peptide coaggregation in solution can affect the disruption of membranes by synergistic AMPs. Our findings provide crucial details about the complex molecular origins of AMP synergy, which will help guide the future development of synergistic AMPs as well as applications of anti-infective peptide cocktail therapies.


Assuntos
Anti-Infecciosos/química , Proteínas Citotóxicas Formadoras de Poros/química , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Apoptose/efeitos dos fármacos , Membrana Externa Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Agregados Proteicos , Conformação Proteica
7.
Angew Chem Int Ed Engl ; 59(38): 16668-16674, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32525593

RESUMO

Selective monofunctionalization of substrates with distant, yet equally reactive functional groups is difficult to achieve, as it requires the second functional group to selectively modulate its reactivity once the first functional group has reacted. We now show that mechanically interlocked catalytic rings can effectively regulate the reactivity of stoppering groups in rotaxanes over a distance of about 2 nm. Our mechanism of communication is enabled by a unique interlocked design, which effectively removes the catalytic rings from the substrates by fast dethreading as soon as the first reaction has taken place. Our method not only led to a rare example of selective monofunctionalization, but also to a "molecular if function". Overall, the study presents a way to get distant functional groups to communicate with each other in a reaction-history-dependent manner by creating linkers that can ultimately perform logical operations at the molecular level.

8.
Biophysicist (Rockv) ; 1(2)2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34337350

RESUMO

Recent advances in computer hardware and software, particularly the availability of machine learning libraries, allow the introduction of data-based topics such as machine learning into the Biophysical curriculum for undergraduate and/or graduate levels. However, there are many practical challenges of teaching machine learning to advanced-level students in the biophysics majors, who often do not have a rich computational background. Aiming to overcome such challenges, we present an educational study, including the design of course topics, pedagogical tools, and assessments of student learning, to develop the new methodology to incorporate the basis of machine learning in an existing Biophysical elective course, and engage students in exercises to solve problems in an interdisciplinary field. In general, we observed that students had ample curiosity to learn and apply machine learning algorithms to predict molecular properties. Notably, feedback from the students suggests that care must be taken to ensure student preparations for understanding the data-driven concepts and fundamental coding aspects required for using machine learning algorithms. This work establishes a framework for future teaching approaches that unite machine learning and any existing course in the biophysical curriculum, while also pinpointing the critical challenges that educators and students will likely face.

9.
J Chem Theory Comput ; 15(3): 1514-1522, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30677300

RESUMO

Modeling peptide assembly from monomers on large time and length scales is often intractable at the atomistic resolution. To address this challenge, we present a new approach which integrates coarse-grained (CG), mixed-resolution, and all-atom (AA) modeling in a single simulation. We simulate the initial encounter stage with the CG model, while the further assembly and reorganization stages are simulated with the mixed-resolution and AA models. We have implemented this top-down approach with new tools to automate model transformations and to monitor oligomer formations. Further, a theory was developed to estimate the optimal simulation length for each stage using a model peptide, melittin. The assembly level, the oligomer distribution, and the secondary structures of melittin simulated by the optimal protocol show good agreement with prior experiments and AA simulations. Finally, our approach and theory have been successfully validated with three amyloid peptides (ß-amyloid 16-22, GNNQQNY fragment from the yeast prion protein SUP35, and α-synuclein fibril 35-55), which highlight the synergy from modeling at multiple resolutions. This work not only serves as proof of concept for multiresolution simulation studies but also presents practical guidelines for further self-assembly simulations at more physically and chemically relevant scales.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Fatores de Terminação de Peptídeos/química , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , alfa-Sinucleína/química , Difusão , Humanos , Meliteno/química , Simulação de Dinâmica Molecular , Agregados Proteicos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...