Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(7): e2350610, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576227

RESUMO

Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Pulmão , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Mycobacterium abscessus/imunologia , Camundongos , Infecções por Mycobacterium não Tuberculosas/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia , Modelos Animais de Doenças , Macrófagos/imunologia , Células Th1/imunologia , Camundongos Endogâmicos C3H , Feminino
2.
Mucosal Immunol ; 15(6): 1405-1415, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36411332

RESUMO

Multiple SARS-CoV-2 vaccine candidates have been approved for use and have had a major impact on the COVID-19 pandemic. There remains, however, a significant need for vaccines that are safe, easily transportable and protective against infection, as well as disease. Mucosal vaccination is favored for its ability to induce immune memory at the site of infection, making it appealing for SARS-CoV-2 vaccine strategies. In this study we performed in-depth analysis of the immune responses in mice to a subunit recombinant spike protein vaccine formulated with the delta-inulin adjuvant Advax when administered intratracheally (IT), versus intramuscular delivery (IM). Both routes produced robust neutralizing antibody titers (NAb) and generated sterilizing immunity against SARS-CoV-2. IT delivery, however, produced significantly higher systemic and lung-local NAb that resisted waning up to six months post vaccination, and only IT delivery generated inducible bronchus-associated lymphoid tissue (iBALT), a site of lymphocyte antigen presentation and proliferation. This was coupled with robust and long-lasting lung tissue-resident memory CD4+ and CD8+ T cells that were not observed in IM-vaccinated mice. This study provides a detailed view of the lung-resident cellular response to IT vaccination against SARS-CoV-2 and demonstrates the importance of delivery site selection in the development of vaccine candidates.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Inulina , Vacinas contra COVID-19 , Linfócitos T CD8-Positivos , Memória Imunológica , Pandemias , COVID-19/prevenção & controle , Imunização , Vacinas Sintéticas , Vacinação , Adjuvantes Imunológicos , Mucosa Gástrica , Pulmão
3.
Front Microbiol ; 13: 842017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308378

RESUMO

Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.

4.
Mucosal Immunol ; 14(3): 762-773, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542494

RESUMO

There is an urgent need for novel vaccination strategies to combat respiratory pathogens. Mucosal vaccine delivery is an attractive option as it directly targets the site of infection; however, preclinical development has been hindered by a lack of suitable mucosal adjuvants and a limited understanding of their immune effects in the lung environment. Herein, we define the early immune events following the intrapulmonary delivery of a vaccine incorporating the adjuvant delta-inulin. Analysis of the early inflammatory response showed vaccine-induced innate cell recruitment to lungs and local lymph nodes (LN) was transient and non-polarised, correlating with an increase in pulmonary chemotactic factors. Use of fluorescently labelled adjuvant revealed widespread tissue dissemination of adjuvant particles, coupled with broad cellular uptake and transit to the lung-draining LN by a range of innate immune cells. Mass cytometric analysis revealed extensive phenotypic changes in innate and adaptive cell subsets induced by vaccination; this included identification of unconventional lymphocytes such as γδ-T cells and MAIT cells that increased following vaccination and displayed an activated phenotype. This study details a comprehensive view of the immune response to intrapulmonary adjuvant administration and provides pre-clinical evidence to support delta-inulin as a suitable adjuvant for pulmonary vaccines.


Assuntos
Inulina/análogos & derivados , Pulmão/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Linfócitos T/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos , Animais , Feminino , Imunidade Inata , Imunização , Inulina/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Vacinação
5.
NPJ Vaccines ; 5(1): 105, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33298977

RESUMO

The development of effective vaccines against bacterial lung infections requires the induction of protective, pathogen-specific immune responses without deleterious inflammation within the pulmonary environment. Here, we made use of a polysaccharide-adjuvanted vaccine approach to elicit resident pulmonary T cells to protect against aerosol Mycobacterium tuberculosis infection. Intratracheal administration of the multistage fusion protein CysVac2 and the delta-inulin adjuvant Advax™ (formulated with a TLR9 agonist) provided superior protection against aerosol M. tuberculosis infection in mice, compared to parenteral delivery. Surprisingly, removal of the TLR9 agonist did not impact vaccine protection despite a reduction in cytokine-secreting T cell subsets, particularly CD4+IFN-γ+IL-2+TNF+ multifunctional T cells. CysVac2/Advax-mediated protection was associated with the induction of lung-resident, antigen-specific memory CD4+ T cells that expressed IL-17 and RORγT, the master transcriptional regulator of Th17 differentiation. IL-17 was identified as a key mediator of vaccine efficacy, with blocking of IL-17 during M. tuberculosis challenge reducing phagocyte influx, suppressing priming of pathogen-specific CD4+ T cells in local lymph nodes and ablating vaccine-induced protection. These findings suggest that tuberculosis vaccines such as CysVac2/Advax that are capable of eliciting Th17 lung-resident memory T cells are promising candidates for progression to human trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...