Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 12(6): e028234, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892069

RESUMO

Background We recently reported aberrant processing and localization of the precursor PNC (pro-N-cadherin) protein in failing heart tissues and detected elevated PNC products in the plasma of patients with heart failure. We hypothesize that PNC mislocalization and subsequent circulation is an early event in the pathogenesis of heart failure, and therefore circulating PNC is an early biomarker of heart failure. Methods and Results In collaboration with the Duke University Clinical and Translational Science Institute's MURDOCK (Measurement to Understand Reclassification of Disease of Cabarrus and Kannapolis) study, we queried enrolled individuals and sampled 2 matched cohorts: a cohort of individuals with no known heart failure at the time of serum collection and no heart failure development in the following 13 years (n=289, cohort A) and a matching cohort of enrolled individuals who had no known heart failure at the time of serum collection but subsequently developed heart failure within the following 13 years (n=307, cohort B). Serum PNC and NT-proBNP (N-terminal pro B-type natriuretic peptide) concentrations in each population were quantified by ELISA. We detected no significant difference in NT-proBNP rule-in or rule-out statistics between the 2 cohorts at baseline. In participants who developed heart failure, serum PNC is significantly elevated relative to those who did not report development of heart failure (P<0.0001). Receiver operating characteristic analyses of PNC demonstrate diagnostic value for subclinical heart failure. Additionally, PNC has diagnostic potential when comparing participants with no reported heart failure risk factors from cohort A to at-risk participants from cohort B over the 13-year follow-up. Participants whose PNC levels measure >6 ng/mL have a 41% increased risk of all-cause mortality independent of age, body mass index, sex, NT-proBNP, blood pressure, previous heart attack, and coronary artery disease (P=0.044, n=596). Conclusions These data suggest that PNC is an early marker of heart failure and has the potential to identify patients who would benefit from early therapeutic intervention.


Assuntos
Doença da Artéria Coronariana , Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Prognóstico , Biomarcadores , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos
2.
Cells ; 11(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011717

RESUMO

Prior research has implicated the involvement of cell adhesion molecule N-cadherin in tissue fibrosis and remodeling. We hypothesize that anomalies in N-cadherin protein processing are involved in pathological fibrosis. Diseased tissues associated with fibrosis of the heart, lung, and liver were probed for the precursor form of N-cadherin, pro-N-cadherin (PNC), by immunohistochemistry and compared to healthy tissues. Myofibroblast cell lines were analyzed for cell surface pro-N-cadherin by flow cytometry and immunofluorescent microscopy. Soluble PNC products were immunoprecipitated from patient plasmas and an enzyme-linked immunoassay was developed for quantification. All fibrotic tissues examined show aberrant PNC localization. Cell surface PNC is expressed in myofibroblast cell lines isolated from cardiomyopathy and idiopathic pulmonary fibrosis but not on myofibroblasts isolated from healthy tissues. PNC is elevated in the plasma of patients with cardiomyopathy (p ≤ 0.0001), idiopathic pulmonary fibrosis (p ≤ 0.05), and nonalcoholic fatty liver disease with cirrhosis (p ≤ 0.05). Finally, we have humanized a murine antibody and demonstrate that it significantly inhibits migration of PNC expressing myofibroblasts. Collectively, the aberrant localization of PNC is observed in all fibrotic tissues examined in our study and our data suggest a role for cell surface PNC in the pathogenesis of fibrosis.


Assuntos
Caderinas/metabolismo , Fibrose/fisiopatologia , Proteólise/efeitos dos fármacos , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos
3.
Leukemia ; 35(12): 3371-3382, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34120146

RESUMO

Leukemic stem cells (LSCs) can acquire non-mutational resistance following drug treatment leading to therapeutic failure and relapse. However, oncogene-independent mechanisms of drug persistence in LSCs are incompletely understood, which is the primary focus of this study. We integrated proteomics, transcriptomics, and metabolomics to determine the contribution of STAT3 in promoting metabolic changes in tyrosine kinase inhibitor (TKI) persistent chronic myeloid leukemia (CML) cells. Proteomic and transcriptional differences in TKI persistent CML cells revealed BCR-ABL-independent STAT3 activation in these cells. While knockout of STAT3 inhibited the CML cells from developing drug-persistence, inhibition of STAT3 using a small molecule inhibitor sensitized the persistent CML cells to TKI treatment. Interestingly, given the role of phosphorylated STAT3 as a transcription factor, it localized uniquely to genes regulating metabolic pathways in the TKI-persistent CML stem and progenitor cells. Subsequently, we observed that STAT3 dysregulated mitochondrial metabolism forcing the TKI-persistent CML cells to depend on glycolysis, unlike TKI-sensitive CML cells, which are more reliant on oxidative phosphorylation. Finally, targeting pyruvate kinase M2, a rate-limiting glycolytic enzyme, specifically eradicated the TKI-persistent CML cells. By exploring the role of STAT3 in altering metabolism, we provide critical insight into identifying potential therapeutic targets for eliminating TKI-persistent LSCs.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Metaboloma , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcriptoma , Animais , Apoptose , Feminino , Glicólise , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/genética
4.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208555

RESUMO

The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.


Assuntos
Células da Medula Óssea/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Interleucina-10/metabolismo , Células-Tronco Mesenquimais/fisiologia , Células Estromais/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Comunicação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais/citologia , Células Estromais/imunologia
5.
Breast Cancer Res Treat ; 174(2): 413-422, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30594967

RESUMO

PURPOSE: Most triple-negative breast cancer (TNBC) patients exhibit an incomplete response to neoadjuvant chemotherapy, resulting in chemo-residual tumor cells that drive tumor recurrence and patient mortality. Accordingly, strategies for eliminating chemo-residual tumor cells are urgently needed. Although stromal cells contribute to tumor cell invasion, to date, their ability to influence chemo-residual tumor cell behavior has not been examined. Our study is the first to investigate cross-talk between adipose-derived stem cells (ASCs) and chemo-residual TNBC cells. We examine if ASCs promote chemo-residual tumor cell proliferation, having implications for tumor recurrence. METHODS: ASC migration toward chemo-residual TNBC cells was tested in a transwell migration assay. Importance of the SDF-1α/CXCR4 axis was determined using neutralizing antibodies and a small molecule inhibitor. The ability of ASCs to drive tumor cell proliferation was analyzed by culturing tumor cells ± ASC conditioned media (CM) and determining cell counts. Downstream signaling pathways activated in chemo-residual tumor cells following their exposure to ASC CM were studied by immunoblotting. Importance of FGF2 in promoting proliferation was assessed using an FGF2-neutralizing antibody. RESULTS: ASCs migrated toward chemo-residual TNBC cells in a CXCR4/SDF-1α-dependent manner. Moreover, ASC CM increased chemo-residual tumor cell proliferation and activity of extracellular signal-regulated kinase (ERK). An FGF2-neutralizing antibody inhibited ASC-induced chemo-residual tumor cell proliferation. CONCLUSIONS: ASCs migrate toward chemo-residual TNBC cells via SDF-1α/CXCR4 signaling, and drive chemo-residual tumor cell proliferation in a paracrine manner by secreting FGF2 and activating ERK. This paracrine signaling can potentially be targeted to prevent tumor recurrence.


Assuntos
Tecido Adiposo/citologia , Quimiocina CXCL12/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Receptores CXCR4/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Tecido Adiposo/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Meios de Cultivo Condicionados/química , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Recidiva Local de Neoplasia/metabolismo , Comunicação Parácrina , Células-Tronco/citologia , Células-Tronco/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
6.
Biochem Biophys Res Commun ; 490(3): 855-860, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28648598

RESUMO

Myelin basic protein (MBP) is a key component of myelin, the specialized lipid membrane that encases the axons of all neurons. Both plasminogen (Pg) and tissue-type plasminogen activator (t-PA) bind to MBP with high affinity. We investigated the kinetics and mechanisms involved in this process using immobilized MBP and found that Pg activation by t-PA is significantly stimulated by MBP. This mechanism involves the binding of t-PA via a lysine-dependent mechanism to the Lys91 residue of the MBP NH2-terminal region Asp82 -Pro99, and the binding of Pg via a lysine-dependent mechanism to the Lys122 residue of the MBP COOH-terminal region Leu109-Gly126. In this context, MBP mimics fibrin and because MBP is a plasmin substrate, our results suggest direct participation of the Pg activation system on MBP physiology.


Assuntos
Proteína Básica da Mielina/metabolismo , Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Sítios de Ligação , Ativação Enzimática , Humanos , Cinética , Lisina/análise , Lisina/metabolismo , Proteína Básica da Mielina/química , Ligação Proteica , Domínios Proteicos , Proteólise
7.
Ann Clin Transl Neurol ; 4(4): 246-265, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28382306

RESUMO

OBJECTIVE: At present, the absence of a pharmacological neuroprotectant represents an important unmet clinical need in the treatment of ischemic and traumatic brain injury. Recent evidence suggests that administration of apolipoprotein E mimetic therapies represent a viable therapeutic strategy in this setting. We investigate the neuroprotective and anti-inflammatory properties of the apolipoprotein E mimetic pentapeptide, CN-105, in a microglial cell line and murine model of ischemic stroke. METHODS: Ten to 13-week-old male C57/BL6 mice underwent transient middle cerebral artery occlusion and were randomly selected to receive CN-105 (0.1 mg/kg) in 100 µL volume or vehicle via tail vein injection at various time points. Survival, motor-sensory functional outcomes using rotarod test and 4-limb wire hanging test, infarct volume assessment using 2,3,5-Triphenyltetrazolium chloride staining method, and microglial activation in the contralateral hippocampus using F4/80 immunostaining were assessed at various time points. In vitro assessment of tumor necrosis factor-alpha secretion in a microglial cell line was performed, and phosphoproteomic analysis conducted to explore early mechanistic pathways of CN-105 in ischemic stroke. RESULTS: Mice receiving CN-105 demonstrated improved survival, improved functional outcomes, reduced infarct volume, and reduced microglial activation. CN-105 also suppressed inflammatory cytokines secretion in microglial cells in vitro. Phosphoproteomic signals suggest that CN-105 reduces proinflammatory pathways and lower oxidative stress. INTERPRETATION: CN-105 improves functional and histological outcomes in a murine model of ischemic stroke via modulation of neuroinflammatory pathways. Recent clinical trial of this compound has demonstrated favorable pharmacokinetic and safety profile, suggesting that CN-105 represents an attractive candidate for clinical translation.

8.
PLoS One ; 11(4): e0153207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27074138

RESUMO

The plasticity of AML drives poor clinical outcomes and confounds its longitudinal detection. However, the immediate impact of treatment on the leukemic and non-leukemic cells of the bone marrow and blood remains relatively understudied. Here, we conducted a pilot study of high dimensional longitudinal monitoring of immunophenotype in AML. To characterize changes in cell phenotype before, during, and immediately after induction treatment, we developed a 27-antibody panel for mass cytometry focused on surface diagnostic markers and applied it to 46 samples of blood or bone marrow tissue collected over time from 5 AML patients. Central goals were to determine whether changes in AML phenotype would be captured effectively by cytomic tools and to implement methods for describing the evolving phenotypes of AML cell subsets. Mass cytometry data were analyzed using established computational techniques. Within this pilot study, longitudinal immune monitoring with mass cytometry revealed fundamental changes in leukemia phenotypes that occurred over time during and after induction in the refractory disease setting. Persisting AML blasts became more phenotypically distinct from stem and progenitor cells due to expression of novel marker patterns that differed from pre-treatment AML cells and from all cell types observed in healthy bone marrow. This pilot study of single cell immune monitoring in AML represents a powerful tool for precision characterization and targeting of resistant disease.


Assuntos
Medula Óssea/imunologia , Quimioterapia de Indução , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Medula Óssea/patologia , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...