Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5802, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987248

RESUMO

Next-generation light-emitting applications such as displays and optical communications require judicious control over emitted light, including intensity and angular dispersion. To date, this remains a challenge as conventional methods require cumbersome optics. Here, we report highly directional and enhanced electroluminescence from a solution-processed quasi-2-dimensional halide perovskite light-emitting diode by building a device architecture to exploit hybrid plasmonic-photonic Tamm plasmon modes. By exploiting the processing and bandgap tunability of the halide perovskite device layers, we construct the device stack to optimise both optical and charge-injection properties, leading to narrow forward electroluminescence with an angular full-width half-maximum of 36.6° compared with the conventional isotropic control device of 143.9°, and narrow electroluminescence spectral full-width half-maximum of 12.1 nm. The device design is versatile and tunable to work with emission lines covering the visible spectrum with desired directionality, thus providing a promising route to modular, inexpensive, and directional operating light-emitting devices.

2.
Adv Mater ; 36(28): e2307508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728063

RESUMO

Halide perovskites are excellent candidate materials for use in solar cell, LED, and detector devices, in part because their composition can be tuned to achieve ideal optoelectronic properties. Empirical efficiency optimization has led the field toward compositions rich in FA (formamidinium) on the A-site and I on the X-site, with additional small amounts of MA (methylammonium) or Cs A-site cations and Br X-site anions. However, it is not clear how and why the specific compositions of alloyed, that is, mixed component, halide perovskites relate to photo-stability of the materials. Here, this work combines synchrotron grazing incidence wide-angle X-ray scattering, photoluminescence, high-resolution scanning electron diffraction measurements and theoretical modelling to reveal the links between material structure and photostability. Namely, this work finds that increased octahedral titling leads to improved photo-stability that is correlated with lower densities of performance-harming hexagonal polytype impurities. These results uncover the structural signatures underpinning photo-stability and can therefore be used to make targeted changes to halide perovskites, bettering the commercial prospects of technologies based on these materials.

3.
Nature ; 615(7954): 830-835, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922588

RESUMO

Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.

4.
Adv Mater ; 34(31): e2203300, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35623033

RESUMO

The structural coloration of arthropods often arises from helicoidal structures made primarily of chitin. Although it is possible to achieve analogous helicoidal architectures by exploiting the self-assembly of chitin nanocrystals (ChNCs), to date no evidence of structural coloration has been reported from such structures. Previous studies are identified to have been constrained by both the experimental inability to access sub-micrometer helicoidal pitches and the intrinsically low birefringence of crystalline chitin. To expand the range of accessible pitches, here, ChNCs are isolated from two phylogenetically distinct sources of α-chitin, namely fungi and shrimp, while to increase the birefringence, an in situ alkaline treatment is performed, increasing the intensity of the reflected color by nearly two orders of magnitude. By combining this treatment with precise control over ChNC suspension formulation, structurally colored chitin-based films are demonstrated with reflection tunable from blue to near infrared.


Assuntos
Quitina , Nanopartículas , Quitina/química , Nanopartículas/química , Suspensões
5.
Adv Mater ; 34(18): e2200383, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288992

RESUMO

The interaction of high-energy electrons and X-ray photons with beam-sensitive semiconductors such as halide perovskites is essential for the characterization and understanding of these optoelectronic materials. Using nanoprobe diffraction techniques, which can investigate physical properties on the nanoscale, studies of the interaction of electron and X-ray radiation with state-of-the-art (FA0.79 MA0.16 Cs0.05 )Pb(I0.83 Br0.17 )3 hybrid halide perovskite films (FA, formamidinium; MA, methylammonium) are performed, tracking the changes in the local crystal structure as a function of fluence using scanning electron diffraction and synchrotron nano X-ray diffraction techniques. Perovskite grains are identified, from which additional reflections, corresponding to PbBr2 , appear as a crystalline degradation phase after fluences of 200 e- Å- 2 . These changes are concomitant with the formation of small PbI2 crystallites at the adjacent high-angle grain boundaries, with the formation of pinholes, and with a phase transition from tetragonal to cubic. A similar degradation pathway is caused by photon irradiation in nano-X-ray diffraction, suggesting common underlying mechanisms. This approach explores the radiation limits of these materials and provides a description of the degradation pathways on the nanoscale. Addressing high-angle grain boundaries will be critical for the further improvement of halide polycrystalline film stability, especially for applications vulnerable to high-energy radiation such as space photovoltaics.

6.
Adv Mater ; 33(32): e2102462, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219285

RESUMO

Hybrid-perovskite-based optoelectronic devices are demonstrating unprecedented growth in performance, and defect passivation approaches are highly promising routes to further improve properties. Here, the effect of the molecular ion BF4 - , introduced via methylammonium tetrafluoroborate (MABF4 ) in a surface treatment for MAPbI3 perovskite, is reported. Optical spectroscopy characterization shows that the introduction of tetrafluoroborate leads to reduced non-radiative charge-carrier recombination with a reduction in first-order recombination rate from 6.5 × 106 to 2.5 × 105 s-1 in BF4 - -treated samples, and a consequent increase in photoluminescence quantum yield by an order of magnitude (from 0.5 to 10.4%). 19 F, 11 B, and 14 N solid-state NMR is used to elucidate the atomic-level mechanism of the BF4 - additive-induced improvements, revealing that the BF4 - acts as a scavenger of excess MAI by forming MAI-MABF4 cocrystals. This shifts the equilibrium of iodide concentration in the perovskite phase, thereby reducing the concentration of interstitial iodide defects that act as deep traps and non-radiative recombination centers. These collective results allow us to elucidate the microscopic mechanism of action of BF4 - .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...