Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Technol (Weinh) ; 9(3): 2000880, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791188

RESUMO

The electrochemical intercalation/deintercalation of solvated sodium ions into graphite is a highly reversible process, but leads to large, undesired electrode expansion/shrinkage ("breathing"). Herein, two strategies to mitigate the electrode expansion are studied. Starting with the standard configuration (-) sodium | diglyme (2G) electrolyte | graphite (poly(vinylidene difluoride) (PVDF) binder) (+), the PVDF binder is first replaced with a binder made of the sodium salt of carboxymethyl cellulose (CMC). Second, ethylenediamine (EN) is added to the electrolyte solution as a co-solvent. The electrode breathing is followed in situ (operando) through electrochemical dilatometry (ECD). It is found that replacing PVDF with CMC is only effective in reducing the electrode expansion during initial sodiation. During cycling, the electrode breathing for both binders is comparable. Much more effective is the addition of EN. The addition of 10 v/v EN to the diglyme electrolyte strongly reduces the electrode expansion during the initial sodiation (+100% with EN versus +175% without EN) as well as the breathing during cycling. A more detailed analysis of the ECD signals reveals that solvent co-intercalation temporarily leads to pillaring of the graphite lattice and that the addition of EN to 2G leads to a change in the sodium storage mechanism.

2.
Nano Lett ; 20(7): 5391-5399, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32463248

RESUMO

Polysulfide shuttle effects, active material losses, formation of resistive surface layers, and continuous electrolyte consumption create a major barrier for the lightweight and low-cost lithium-sulfur (Li-S) battery adoption. Tuning electrolyte composition by using additives and most importantly by substantially increasing electrolyte molarity was previously shown to be one of the most effective strategies. Contrarily, little attention has been paid to dilute and super-diluted LiTFSI/DME/DOL/LiNO3 based-electrolytes, which have been thought to aggravate the polysulfide dissolution and shuttle effects. Here we challenge this conventional wisdom and demonstrate outstanding capabilities of a dilute (0.1 mol L-1 of LiTFSI in DME/DOL with 1 wt. % LiNO3) electrolyte to enable better electrode wetting, greatly improved high-rate capability, and stable cycle performance for high sulfur loading cathodes and low electrolyte/sulfur ratio in Li-S cells. Overall, the presented study shines light on the extraordinary ability of such electrolyte systems to suppress short-chain polysulfide dissolution and polysulfide shuttle effects.

3.
ACS Appl Mater Interfaces ; 11(12): 11298-11305, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30817109

RESUMO

The oxygen reduction reaction (ORR) in aqueous media plays a critical role in sustainable and clean energy technologies such as polymer electrolyte membrane and alkaline fuel cells. In this work, we present a new concept to improve the ORR performance by engineering the interface reaction at the electrocatalyst/electrolyte/oxygen triple-phase boundary using a protic and hydrophobic ionic liquid and demonstrate the wide and general applicability of this concept to several Pt-free catalysts. Two catalysts, Fe-N codoped and metal-free N-doped carbon electrocatalysts, are used as a proof of concept. The ionic liquid layer grafted at the nanocarbon surface creates a water-equilibrated secondary reaction medium with a higher O2 affinity toward oxygen adsorption, promoting the diffusion toward the catalytic active site, while its protic character provides sufficient H+/H3O+ conductivity, and the hydrophobic nature prevents the resulting reaction product water from accumulating and blocking the interface. Our strategy brings obvious improvements in the ORR performance in both acid and alkaline electrolytes, while the catalytic activity of FeNC-nanocarbon outperforms commercial Pt-C in alkaline electrolytes. We believe that this research will pave new routes toward the development of high-performance ORR catalysts free of noble metals via careful interface engineering at the triple point.

4.
Chemistry ; 22(48): 17351-17358, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775199

RESUMO

A facile and environmentally friendly synthetic strategy for the production of stable and easily processable dispersions of graphene in water is presented. This strategy represents an alternative to classical chemical exfoliation methods (for example the Hummers method) that are more complex, harmful, and dangerous. The process is based on the electrochemical exfoliation of graphite and includes three simple steps: 1) the anodic exfoliation of graphite in (NH4 )2 SO4 , 2) sonication to separate the oxidized graphene sheets, and 3) reduction of oxidized graphene to graphene. The procedure makes it possible to convert around 30 wt % of the initial graphite into graphene with short processing times and high yields. The graphene sheets are well dispersed in water, have a carbon/oxygen atomic ratio of 11.7, a lateral size of about 0.5-1 µm, and contain only a few graphene layers, most of which are bilayer sheets. The processability of this type of aqueous dispersion has been demonstrated in the fabrication of macroscopic graphene structures, such as graphene aerogels and graphene films, which have been successfully employed as absorbents or as electrodes in supercapacitors, respectively.

5.
ACS Nano ; 10(6): 5922-32, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27214056

RESUMO

High surface area N-doped mesoporous carbon capsules with iron traces exhibit outstanding electrocatalytic activity for the oxygen reduction reaction in both alkaline and acidic media. In alkaline conditions, they exhibit more positive onset (0.94 V vs RHE) and half-wave potentials (0.83 V vs RHE) than commercial Pt/C, while in acidic media the onset potential is comparable to that of commercial Pt/C with a peroxide yield lower than 10%. The Fe-N-doped carbon catalyst combines high catalytic activity with remarkable performance stability (3500 cycles between 0.6 and 1.0 V vs RHE), which stems from the fact that iron is coordinated to nitrogen. Additionally, the newly developed electrocatalyst is unaffected by the methanol crossover effect in both acid and basic media, contrary to commercial Pt/C. The excellent catalytic behavior of the Fe-N-doped carbon, even in the more relevant acid medium, is attributable to the combination of chemical functions (N-pyridinic, N-quaternary, and Fe-N coordination sites) and structural properties (large surface area, open mesoporous structure, and short diffusion paths), which guarantees a large number of highly active and fully accessible catalytic sites and rapid mass-transfer kinetics. Thus, this catalyst represents an important step forward toward replacing Pt catalysts with cheaper alternatives. In this regard, an alkaline anion exchange membrane fuel cell was assembled with Fe-N-doped mesoporous carbon capsules as the cathode catalyst to provide current and power densities matching those of a commercial Pt/C, which indicates the practical applicability of the Fe-N-carbon catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...