Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 100(5): 453-463, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34932399

RESUMO

The complexity of hepatocellular carcinoma (HCC) signaling and the failure of pharmacological therapeutics reveal the significance of establishing new anti-cancer strategies. Interferon alpha (IFN-α) has been used as adjuvant therapy for reducing HCC recurrence and improving survival. Delta-tocotrienol (δ-tocotrienol), a natural unsaturated isoform of vitamin E, is a promising candidate for cancer treatment. In this study, we evaluated whether the combination of δ-tocotrienol with IFN-α displays significant advantages in the treatment of HCC cells. Results showed that the combination significantly decreased cell viability, migration and invasion of HCC cells compared with single therapies. Combining δ-tocotrienol and IFN-α enhanced the decrease in proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase (MMP) 7 and MMP-9. The combination also produced an enhancement of apoptosis together with increased Bax/Bcl-xL ratio and reactive oxygen species (ROS) generation. δ-tocotrienol induced Notch1 activation and changes in Erk and p38 MAPK signaling status. Blocking experiments confirmed that ROS and Erk are involved, at least in part, in the anti-cancer effects of the combined treatment. In conclusion, the combination of δ-tocotrienol with IFN-α therapy showed promising results for HCC cell treatment, which makes the combination of cytokine-based immunotherapy with natural products a potential strategy against liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Neoplasias Hepáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Vitamina E/análogos & derivados , Vitamina E/farmacologia , Vitamina E/uso terapêutico
2.
J Nutr Biochem ; 96: 108806, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147603

RESUMO

Many cancer patients receive their classical therapies together with vitamin supplements. However, the effectiveness of these strategies is on debate. Here we aimed to evaluate how vitamin E supplementation affects the anticancer effects of interferon (IFN-α) using an early-model of liver cancer development (initiation-promotion, IP). Male Wistar rats subjected to this model were divided as follows: untreated (IP), IP treated with recombinant IFN-α-2b (6.5  ×  105 U/kg), IP treated with vitamin E (50 mg/kg), and IP treated with combination of vitamin E and IFN-α-2b. After treatments rats were fasted and euthanized and plasma and livers were collected. Combined administration of vitamin E and IFN-α-2b induced body weight drop, increased liver apoptosis, and low levels of hepatic lipids. Interestingly, vitamin E and IFN-α-2b combination also induced an increase in altered hepatic foci number, but not in size. It seems that vitamin E acts on its antioxidant capability in order to block the oxidative stress induced by IFN-α-2b, blocking in turn its beneficial effects on preneoplastic livers, leading to harmful final effects. In conclusion, this study shows that vitamin E supplementation in IFN-α-2b-treated rats exerts unwanted effects; and highlights that in spite of being natural, nutritional supplements may not always exert beneficial outcomes when used as complementary therapy for the treatment of cancer.


Assuntos
Anticarcinógenos/farmacologia , Interferon alfa-2/farmacologia , Neoplasias Hepáticas/prevenção & controle , Vitamina E/farmacologia , Vitaminas/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Interações Medicamentosas , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Ratos Wistar
3.
Eur J Pharmacol ; 892: 173736, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33220273

RESUMO

Multidrug resistance (MDR) counteracts the efficiency of sorafenib, an important first-line therapy for hepatocellular carcinoma (HCC). Sirtuins (SIRTs) 1 and 2 are associated with tumor progression and MDR. We treated 2D and 3D cultures (which mimic the features of in vivo tumors) from HCC cells with sorafenib alone or in the presence of SIRTs 1 and 2 inhibitors (cambinol or EX-527; combined treatments). Cultures subjected to combined treatments showed a greater fall in cellular viability, proliferation (PCNA, cyclin D1 and Ki-67 expression and cell cycle analysis), migration and invasion when compared with cultures treated only with sorafenib. Similarly, combined treatments produced more apoptosis (annexin V/PI, caspase-3/7 activity) than sorafenib alone. Since cell cycle dysregulation and apoptotic blockage are reported mechanisms of MDR, the modulation found in PCNA, cyclin D1, Ki-67 and caspase-3/7 proteins by cambinol and EX-527 are probably playing a role in enhancing the sensitivity of HCC cell lines to sorafenib. EX-527 reduced MRP3 and BCRP expression in sorafenib-treated HCC cells. Since ABC transporters contribute to MDR, MRP3 and BCRP could be also influencing in the response of HCC cells to sorafenib. Overall, 2D and 3D cultures behave similarly except that 3D cultures were less sensitive to treatments, reinforcing the clinical relevance of the current study. Findings presented in this manuscript support a potential application for SIRTs 1 and 2 inhibitors since we demonstrated that these compounds enhance the inhibitory effect of sorafenib upon treatment of hepatocellular carcinoma cells lines.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carbazóis/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Naftalenos/farmacologia , Pirimidinonas/farmacologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sorafenibe/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Esferoides Celulares
4.
Cytokine ; 133: 155172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590329

RESUMO

IFN-α administration to patients has been long discouraged and pushed back by new and apparently better drugs; however the adverse secondary effect, the high costs and the lack of specific action, make these new drugs hard to be used and put IFN-α again in the eye of the researchers. IFN-α-2b was demonstrated to induce apoptosis and modulation of lipid metabolism and the mechanisms are still unknown. Here, we sought to find the link between these features using a model of early stage cancer development. Using in vitro and in vivo approaches, we evaluated apoptosis and lipid metabolism. IFN-α-2b induced changes in hepatic cholesterol mass due to decreased synthesis and increased secretion. Interestingly, the drop in cellular cholesterol levels was necessary for IFN-α-2b to induce apoptosis. Results presented in this paper show the complexity of the action of IFN-α-2b on the early stages of liver cancer development. We show for the first time an interrelationship between cholesterol, apoptosis and IFN-α-2b. This makes clear the need for a reevaluation of IFN-α-2b action in order to develop softer, safer and more bearable derivatives. In this regard, knowing the molecular mechanisms by which IFN-α exerts its cellular actions is of crucial importance, and it is the main condition for therapy success for classical and new malignancies.


Assuntos
Apoptose/efeitos dos fármacos , Colesterol/metabolismo , Hepatócitos/efeitos dos fármacos , Interferon alfa-2/farmacologia , Animais , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratos , Ratos Wistar
5.
Toxicol Appl Pharmacol ; 379: 114650, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31299271

RESUMO

IFN-α is used for inflammatory purposes, and obesity and NAFLD are strongly correlated with inflammatory processes. We wondered whether IFN-α-2b can attenuate obesity development and its associated NAFLD in mice fed high fat diet (HFD) for 10 weeks. IFN-α-2b had a robust effect on body weight loss associated with NAFLD amelioration by decreasing hepatic inflammation. IFN-α-2b-treated mice showed increased plasma cholesterol levels together with decreased hepatic cholesterol, both on chow and HF diets. Interestingly, mice on IFN-α-2b treatment secreted smaller VLDL particles highly enriched in cholesterol. Mechanistically, we found that IFN-α-2b antiobesity effects were related to increased fatty acid oxidation; and its effects on cholesterol metabolism were due to both a decrease in the master cholesterogenic transcription factor SREBP-2 and in the rate limiting enzyme in cholesterol synthesis, HMGCR. To our knowledge, this is the first report showing the effects of IFN-α-2b on the prevention of the development of HFD-induced body weight gain and dyslipidemia through a mechanism that involves fatty acid oxidation and cholesterol decrease. These studies comprise necessary steps for understanding the amelioration of obesity and NAFLD. Results shed some light into the mechanism of action of natural cytokines, and their effects on ameliorating obesity and its related diseases.


Assuntos
Interferon alfa-2/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/prevenção & controle , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dislipidemias/tratamento farmacológico , Ácidos Graxos/metabolismo , Lipídeos/sangue , Lipoproteínas/sangue , Lipoproteínas VLDL/sangue , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Hipernutrição/complicações , Reação em Cadeia da Polimerase em Tempo Real
6.
Sci Rep ; 9(1): 2815, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30809021

RESUMO

Hepatocellular carcinoma (HCC) is a highly metastatic cancer with very poor prognosis. AMP activated kinase (AMPK) constitutes a candidate to inhibit HCC progression. First, AMPK is downregulated in HCC. Second, glucose starvation induces apoptosis in HCC cells via AMPK. Correspondingly, metformin activates AMPK and inhibits HCC cell proliferation. Nevertheless, the effect of AMPK activation on HCC cell invasiveness remains elusive. Here, migration/invasion was studied in HCC cells exposed to metformin and glucose starvation. Cell viability, proliferation and differentiation, as well as AMPK and PKA activation were analyzed. In addition, invasiveness in mutants of the AMPKα activation loop was assessed. Metformin decreased cell migration, invasion and epithelial-mesenchymal transition, and interference with AMPKα expression avoided metformin actions. Those antitumor effects were potentiated by glucose deprivation. Metformin activated AMPK at the same time that inhibited PKA, and both effects were enhanced by glucose starvation. Given that AMPKα(S173) phosphorylation by PKA decreases AMPK activation, we hypothesized that the reduction of PKA inhibitory effect by metformin could explain the increased antitumor effects observed. Supporting this, in AMPK activating conditions, cell migration/invasion was further impaired in AMPKα(S173C) mutant cells. Metformin emerges as a strong inhibitor of migration/invasion in HCC cells, and glucose restriction potentiates this effect.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Movimento Celular , Glucose/metabolismo , Neoplasias Hepáticas/fisiopatologia , Metformina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Invasividade Neoplásica
7.
J Cell Physiol ; 233(2): 1468-1480, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28548701

RESUMO

Most epithelial cells contain apical membrane structures associated to bundles of actin filaments, which constitute the brush border. Whereas microtubule participation in the maintenance of the brush border identity has been characterized, their contribution to de novo microvilli organization remained elusive. Hereby, using a cell model of individual enterocyte polarization, we found that nocodazole induced microtubule depolymerization prevented the de novo brush border formation. Microtubule participation in brush border actin organization was confirmed in polarized kidney tubule MDCK cells. We also found that centrosome, but not Golgi derived microtubules, were essential for the initial stages of brush border development. During this process, microtubule plus ends acquired an early asymmetric orientation toward the apical membrane, which clearly differs from their predominant basal orientation in mature epithelia. In addition, overexpression of the microtubule plus ends associated protein CLIP170, which regulate actin nucleation in different cell contexts, facilitated brush border formation. In combination, the present results support the participation of centrosomal microtubule plus ends in the activation of the polarized actin organization associated to brush border formation, unveiling a novel mechanism of microtubule regulation of epithelial polarity.


Assuntos
Colo/fisiologia , Enterócitos/fisiologia , Células Epiteliais/fisiologia , Rim/fisiologia , Microtúbulos/fisiologia , Microvilosidades/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Polaridade Celular , Centrômero/fisiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/ultraestrutura , Cães , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Rim/efeitos dos fármacos , Rim/ultraestrutura , Células Madin Darby de Rim Canino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Nocodazol/farmacologia , Fatores de Tempo , Moduladores de Tubulina/farmacologia
8.
Sci Rep ; 7(1): 14894, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097729

RESUMO

The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mapas de Interação de Proteínas , Polos do Fuso/metabolismo , Animais , Técnicas de Cultura de Células , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células Madin Darby de Rim Canino , Mitose , Polos do Fuso/ultraestrutura
9.
Oncotarget ; 7(14): 17815-28, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894973

RESUMO

The signaling pathways that govern survival response in hepatic cancer cells subjected to nutritional restriction have not been clarified yet. In this study we showed that liver cancer cells undergoing glucose deprivation both arrested in G0/G1 and died mainly by apoptosis. Treatment with the AMPK activator AICAR phenocopied the effect of glucose deprivation on cell survival, whereas AMPK silencing in HepG2/C3A, HuH-7 or SK-Hep-1 cells blocked the cell cycle arrest and the increase in apoptotic death induced by glucose starvation. Both AMPK and PKA were promptly activated after glucose withdrawal. PKA signaling had a dual role during glucose starvation: whereas it elicited an early decreased in cell viability, it later improved this parameter. We detected AMPK phosphorylation (AMPKα(Ser173)) by PKA, which was increased in glucose starved cells and was associated with diminution of AMPK activation. To better explore this inhibitory effect, we constructed a hepatocarcinoma derived cell line which stably expressed an AMPK mutant lacking that PKA phosphorylation site: AMPKα1(S173C). Expression of this mutant significantly decreased viability in cells undergoing glucose starvation. Furthermore, after 36 h of glucose deprivation, the index of AMPKα1(S173C) apoptotic cells doubled the apoptotic index observed in control cells. Two main remarks arise: 1. AMPK is the central signaling kinase in the scenario of cell cycle arrest and death induced by glucose starvation in hepatic cancer cells; 2. PKA phosphorylation of Ser173 comes out as a strong control point that limits the antitumor effects of AMPK in this situation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/deficiência , Neoplasias Hepáticas/metabolismo , Apoptose/fisiologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Glucose/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transdução de Sinais
10.
J Cell Sci ; 128(17): 3277-89, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26208639

RESUMO

The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas do Citoesqueleto/genética , Cães , Complexo de Golgi/genética , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor
11.
Cell Logist ; 3(1): e26331, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24475373

RESUMO

AKAP350 (AKAP450/AKAP9/CG-NAP) is an A-kinase anchoring protein, which recruits multiple signaling proteins to the Golgi apparatus and the centrosomes. Several proteins recruited to the centrosomes by this scaffold participate in the regulation of the cell cycle. Previous studies indicated that AKAP350 participates in centrosome duplication. In the present study we specifically assessed the role of AKAP350 in the progression of the cell cycle. Our results showed that interference with AKAP350 expression inhibits G1/S transition, decreasing the initiation of both DNA synthesis and centrosome duplication. We identified an AKAP350 carboxyl-terminal domain (AKAP350CTD), which contained the centrosomal targeting domain of AKAP350 and induced the initiation of DNA synthesis. Nevertheless, AKAP350CTD expression did not induce centrosomal duplication. AKAP350CTD partially delocalized endogenous AKAP350 from the centrosomes, but increased the centrosomal levels of the cyclin-dependent kinase 2 (Cdk2). Accordingly, the expression of this AKAP350 domain increased the endogenous phosphorylation of nucleophosmin by Cdk2, which occurs at the G1/S transition and is a marker of the centrosomal activity of the cyclin E-Cdk2 complex. Cdk2 recruitment to the centrosomes is a necessary event for the development of the G1/S transition. Altogether, our results indicate that AKAP350 facilitates the initiation of DNA synthesis by scaffolding Cdk2 to the centrosomes, and enabling its specific activity at this organelle. Although this mechanism could also be involved in AKAP350-dependent modulation of centrosomal duplication, it is not sufficient to account for this process.

12.
Apoptosis ; 17(5): 475-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22270152

RESUMO

Glucose deprivation entails oxidative stress and apoptosis in diverse cell types. Liver tissue shows high tolerance to nutritional stress, however regulation of survival in normal hepatocytes subjected to glucose restriction is unclear. We assessed the survival response of cultured hepatocytes subjected to glucose deprivation and analyzed the putative participation of protein kinase A (PKA) in this response. Six hours glucose deprivation induced a PKA dependent activation of apoptosis in cultured hepatocytes, without having an impact on non apoptotic death. Apoptotic activation associated to glucose restriction was secondary to an imbalance in cellular reactive oxygen species (ROS). In this condition, PKA inhibition led to an early prevention in mitochondrial ROS production and a late increase in scavenging enzymes transcript levels. These results supported the hypothesis that PKA could modulate glucose deprivation induced apoptotic activation by conditioning mitochondrial ROS production during glucose fasting. We presented additional evidence sustaining this model: First, glucose withdrawal led to a 95% increase in mitochondrial cAMP levels in cultured hepatocytes; second, activation of PKA significantly augmented hepatic mitochondrial ROS generation, whereas PKA inhibition elicited the opposite effect. Mitochondrial PKA signaling, previously proposed as an autonomic pathway adjusting respiration rate, emerges as a mechanism of controlling cell survival during glucose restriction.


Assuntos
Apoptose , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/deficiência , Hepatócitos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 3/metabolismo , Catalase/genética , Catalase/metabolismo , Sobrevivência Celular , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Citocromos c/metabolismo , Citosol/metabolismo , Hepatócitos/enzimologia , Isoquinolinas/farmacologia , L-Lactato Desidrogenase/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo , Transporte Proteico , Ratos , Ratos Wistar , Transdução de Sinais , Sulfonamidas/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Proteína X Associada a bcl-2/metabolismo
13.
Mol Genet Metab ; 105(2): 186-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22192525

RESUMO

The survival response to glucose limitation in eukaryotic cells involves different signaling pathways highly conserved from yeasts to mammals. Upon nutritional restriction, a network driven by kinases such as the AMP dependent protein kinase (AMPK/Snf1), the Target of Rapamycin kinase (TOR), the Protein kinases A (PKA) or B (PKB/Akt) control stress defenses, cell cycle regulators, pro and anti apoptotic proteins, respiratory complexes, etc. In this work we review the state of the art in this scenario of kinase pathways, i.e. their principal effectors and links, both in yeasts and mammals. We also focus in downstream actors such as sirtuins and the Forkhead box class O transcription factors. Besides, we particularly analyze the participation of these kinases on the balance of Reactive Oxygen Species and their role in the regulation of survival during glucose deprivation. Key results on yeast stationary phase survival and the contribution of such genetics studies are discussed.


Assuntos
Sobrevivência Celular , Células Eucarióticas/metabolismo , Glucose/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Animais , Apoptose , Mamíferos , Saccharomyces cerevisiae , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...