Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 172: 92-105, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748548

RESUMO

Human vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings. Despite their importance, the relationships between the microstructure of vocal folds and their resulting macroscopic properties remain poorly understood. There is a need for versatile models that encompass their structural complexity while mimicking their mechanical features. In this study, we present a candidate model inspired by histological measurements of the upper layers of human vocal folds. Bi-photonic observations were used to quantify the distribution, orientation, width, and volume fraction of collagen and elastin fibers between histological layers. Using established biomaterials, polymer fiber-reinforced hydrogels were developed to replicate the fibrillar network and ground substance of native vocal fold tissue. To achieve this, jet-sprayed poly(ε-caprolactone) fibrillar mats were successfully impregnated with poly(L-lysine) dendrimers/polyethylene glycol hydrogels. The resulting composites exhibited versatile structural, physical and mechanical properties that could be customized through variations in the chemical formulation of their hydrogel matrix, the microstructural architecture of their fibrous networks (i.e., fiber diameter, orientation and volume fraction) and their assembly process. By mimicking the collagen network of the lamina propria with polymer fibers and the elastin/ground substance with the hydrogel composition, we successfully replicated the non-linear, anisotropic, and viscoelastic mechanical behavior of the vocal-fold upper layers, accounting for inter/intra-individual variations. The development of this mimetic model offers promising avenues for a better understanding of the complex mechanisms involved in voice production. STATEMENT OF SIGNIFICANCE: Human vocal folds are outstanding vibrating soft living tissues allowing phonation. Simple physical models that take into account the histological structure of the vocal fold and recapitulate its mechanical features are scarce. As a result, the relations between tissue components, organisation and vibro-mechanical performances still remain an open question. We describe here the development and the characterization of fiber-reinforced hydrogels inspired from the vocal-fold microstructure. These systems are able to reproduce the mechanics of vocal-fold tissues upon realistic cyclic and large strains under various multi-axial loadings, thus providing a mimetic model to further understand the impact of the fibrous network microstructure in phonation.


Assuntos
Elastina , Prega Vocal , Humanos , Prega Vocal/patologia , Hidrogéis/química , Colágeno , Matriz Extracelular , Materiais Biocompatíveis
2.
J Biomed Mater Res A ; 109(6): 926-937, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32779367

RESUMO

Poly(ethylene glycol) (PEG) hydrogels have been extensively used as scaffolds for tissue engineering applications, owing to their biocompatibility, chemical versatility, and tunable mechanical properties. However, their bio-inert properties require them to be associated with additional functional moieties to interact with cells. To circumvent this need, we propose here to reticulate PEG molecules with poly(L-lysine) dendrigrafts (DGL) to provide intrinsic cell functionalities to PEG-based hydrogels. The physico-chemical characteristics of the resulting hydrogels were studied in regard of the concentration of each component. With increasing amounts of DGL, the cross-linking time and swelling ratio could be decreased, conversely to mechanical properties, which could be tailored from 7.7 ± 0.7 to 90 ± 28.8 kPa. Furthermore, fibroblasts adhesion, viability, and morphology on hydrogels were then assessed. While cell adhesion significantly increased with the concentration of DGL, cell viability was dependant of the ratio of DGL and PEG. Cell morphology and proliferation; however, appeared mainly related to the overall hydrogel rigidity. To allow cell infiltration and cell growth in 3D, the hydrogels were rendered porous. The biocompatibility of resulting hydrogels of different compositions and porosities was evaluated by 3 week subcutaneous implantations in mice. Hydrogels allowed an extensive cellular infiltration with a mild foreign body reaction, histological evidence of hydrogel degradation, and neovascularization.


Assuntos
Materiais Biocompatíveis/química , Polietilenoglicóis/química , Polilisina/química , Alicerces Teciduais , Animais , Materiais Biocompatíveis/efeitos adversos , Adesão Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas , Reação a Corpo Estranho , Humanos , Hidrogéis , Fenômenos Mecânicos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Polietilenoglicóis/efeitos adversos , Polilisina/efeitos adversos , Porosidade , Alicerces Teciduais/efeitos adversos
3.
J Biomed Mater Res B Appl Biomater ; 109(1): 102-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700831

RESUMO

In the field of bone regenerative medicine, injectable calcium phosphate cements (CPCs) are used for decades in clinics, as bone void fillers. Most often preformed polymers (e.g., hyaluronic acid, collagen, chitosan, cellulose ethers…) are introduced in the CPC formulation to make it injectable and improve its cohesion. Once the cement has hardened, the polymer is simply trapped in the CPC structure and no organic subnetwork is present. By contrast, in this work a CPC was combined with organic monomers that reticulated in situ so that a continuous biocompatible 3D polymeric subnetwork was formed in the CPC microstructure, resulting in a higher permeability of the CPC, which might allow to accelerate its in vivo degradation. Two options were investigated depending on whether the polymer was formed before the apatitic inorganic network or concomitantly. In the former case, conditions were found to reach a suitable rheology for easy injection of the composite. In addition, the in situ formed polymer was shown to strongly affect the size, density, and arrangement of the apatite crystals formed during the setting reaction, thereby offering an original route to modulate the microstructure and porosity of apatitic cements.


Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Substitutos Ósseos/química , Hidrogéis/química , Regeneração Óssea , Osso e Ossos , Força Compressiva , Humanos , Injeções , Teste de Materiais , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...