Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 133601, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613290

RESUMO

We report experimental measurements of the second-order coherence function g^{(2)}(τ) of the light emitted by a laser-driven dense ensemble of ^{87}Rb atoms. We observe a clear departure from the Siegert relation valid for Gaussian chaotic light. Measuring intensity and first-order coherence, we conclude that the violation is not due to the emergence of a coherent field. This indicates that the light obeys non-Gaussian statistics, stemming from non-Gaussian correlations in the atomic medium. More specifically, the steady state of this driven-dissipative many-body system sustains high-order correlations in the absence of first-order coherence. These findings call for new theoretical and experimental explorations to uncover their origin, and they open new perspectives for the realization of non-Gaussian states of light.

2.
Phys Rev Lett ; 131(20): 203401, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039457

RESUMO

We report the preparation and observation of single atoms of dysprosium in arrays of optical tweezers with a wavelength of 532 nm, imaged on the intercombination line at 626 nm. We use the anisotropic light shift specific to lanthanides and in particular a large difference in tensor and vector polarizabilities between the ground and excited states to tune the differential light shift and produce tweezers in near-magic or magic polarization. This allows us to find a regime where single atoms can be trapped and imaged. Using the tweezer array toolbox to manipulate lanthanides will open new research directions for quantum physics studies by taking advantage of their rich spectrum, large spin, and magnetic dipole moment.

3.
Rep Prog Phys ; 86(2)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583342

RESUMO

Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the experimental investigation of ultracold gases made of highly magnetic atoms has blossomed. The field has yielded the observation of many unprecedented phenomena, in particular those in which long-range and anisotropic dipole-dipole interactions (DDIs) play a crucial role. In this review, we aim to present the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and quantum physics as well as to give a thorough overview of experimental achievements. Highly magnetic atoms distinguish themselves by the fact that their electronic ground-state configuration possesses a large electronic total angular momentum. This results in a large magnetic moment and a rich electronic transition spectrum. Such transitions are useful for cooling, trapping, and manipulating these atoms. The complex atomic structure and large dipolar moments of these atoms also lead to a dense spectrum of resonances in their two-body scattering behaviour. These resonances can be used to control the interatomic interactions and, in particular, the relative importance of contact over dipolar interactions. These features provide exquisite control knobs for exploring the few- and many-body physics of dipolar quantum gases. The study of dipolar effects in magnetic quantum gases has covered various few-body phenomena that are based on elastic and inelastic anisotropic scattering. Various many-body effects have also been demonstrated. These affect both the shape, stability, dynamics, and excitations of fully polarised repulsive Bose or Fermi gases. Beyond the mean-field instability, strong dipolar interactions competing with slightly weaker contact interactions between magnetic bosons yield new quantum-stabilised states, among which are self-bound droplets, droplet assemblies, and supersolids. Dipolar interactions also deeply affect the physics of atomic gases with an internal degree of freedom as these interactions intrinsically couple spin and atomic motion. Finally, long-range dipolar interactions can stabilise strongly correlated excited states of 1D gases and also impact the physics of lattice-confined systems, both at the spin-polarised level (Hubbard models with off-site interactions) and at the spinful level (XYZ models). In the present manuscript, we aim to provide an extensive overview of the various related experimental achievements up to the present.

4.
Opt Lett ; 47(6): 1541-1544, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290359

RESUMO

We report a time-resolved study of collective emission in dense ensembles of two-level atoms. We compare, on the same sample, the buildup of superradiance and subradiance from the ensemble when driven by a strong laser. This allows us to measure the dynamics of the population of superradiant and subradiant states as a function of time. In particular, we demonstrate the buildup in time of subradiant states through superradiant dynamics. This illustrates the dynamics of the many-body density matrix of superradiant ensembles of two-level atoms when departing from the ideal conditions of Dicke superradiance, in which symmetry forbids the population of subradiant states.

5.
Phys Rev Lett ; 124(25): 253602, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639788

RESUMO

We experimentally study resonant light scattering by a one-dimensional randomly filled chain of cold two-level atoms. By a local measurement of the light scattered along the chain, we observe constructive interferences in light-induced dipole-dipole interactions between the atoms. They lead to a shift of the collective resonance despite the average interatomic distance being larger than the wavelength of the light. This result demonstrates that strong collective effects can be enhanced by structuring the geometrical arrangement of the ensemble. We also explore the high intensity regime where atoms cannot be described classically. We compare our measurement to a mean-field, nonlinear coupled-dipole model accounting for the saturation of the response of a single atom.

6.
Phys Rev Lett ; 125(26): 263601, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449783

RESUMO

Fully inverted atoms placed at exactly the same location synchronize as they deexcite, and light is emitted in a burst (known as "Dicke's superradiance"). We investigate the role of finite interatomic separation on correlated decay in mesoscopic chains and provide an understanding in terms of collective jump operators. We show that the superradiant burst survives at small distances, despite Hamiltonian dipole-dipole interactions. However, for larger separations, competition between different jump operators leads to dephasing, suppressing superradiance. Collective effects are still significant for arrays with lattice constants of the order of a wavelength, and lead to a photon emission rate that decays nonexponentially in time. We calculate the two-photon correlation function and demonstrate that emission is correlated and directional, as well as sensitive to small changes in the interatomic distance. These features can be measured in current experimental setups, and are robust to realistic imperfections.

7.
Phys Rev Lett ; 121(3): 030401, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085779

RESUMO

We present transport measurements on a dipolar superfluid using a Bose-Einstein condensate of ^{162}Dy with strong magnetic dipole-dipole interactions. By moving an attractive laser beam through the condensate we observe an anisotropy in superfluid flow. This observation is compatible with an anisotropic critical velocity for the breakdown of dissipationless flow, which, in the spirit of the Landau criterion, can directly be connected to the anisotropy of the underlying dipolar excitation spectrum. In addition, the heating rate above this critical velocity reflects the same anisotropy. Our observations are in excellent agreement with simulations based on the Gross-Pitaevskii equation and highlight the effect of dipolar interactions on macroscopic transport properties, rendering dissipation anisotropic.

8.
Phys Rev Lett ; 120(16): 160402, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756918

RESUMO

We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for ^{164}Dy of 69(4)a_{0}. Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.

9.
Science ; 359(6373): 274-275, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29348223
10.
Nature ; 539(7628): 259-262, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830811

RESUMO

Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

11.
Phys Rev Lett ; 116(21): 215301, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284663

RESUMO

Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here, we report on the observation of stable quantum droplets containing ∼800 atoms that are expected to collapse at the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations mechanically stabilize them against the mean-field collapse. We observe in addition the interference of several droplets indicating that this stable many-body state is phase coherent.

12.
Nature ; 530(7589): 194-7, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26829224

RESUMO

Ferrofluids exhibit unusual hydrodynamic effects owing to the magnetic nature of their constituents. As magnetization increases, a classical ferrofluid undergoes a Rosensweig instability and creates self-organized, ordered surface structures or droplet crystals. Quantum ferrofluids such as Bose-Einstein condensates with strong dipolar interactions also display superfluidity. The field of dipolar quantum gases is motivated by the search for new phases of matter that break continuous symmetries. The simultaneous breaking of continuous symmetries such as the phase invariance in a superfluid state and the translational symmetry in a crystal provides the basis for these new states of matter. However, interaction-induced crystallization in a superfluid has not yet been observed. Here we use in situ imaging to directly observe the spontaneous transition from an unstructured superfluid to an ordered arrangement of droplets in an atomic dysprosium Bose-Einstein condensate. By using a Feshbach resonance to control the interparticle interactions, we induce a finite-wavelength instability and observe discrete droplets in a triangular structure, the number of which grows as the number of atoms increases. We find that these structured states are surprisingly long-lived and observe hysteretic behaviour, which is typical for a crystallization process and in close analogy to the Rosensweig instability. Our system exhibits both superfluidity and, as we show here, spontaneous translational symmetry breaking. Although our observations do not probe superfluidity in the structured states, if the droplets establish a common phase via weak links, then our system is a very good candidate for a supersolid ground state.

13.
Phys Rev Lett ; 115(26): 265303, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765001

RESUMO

We study the dynamics of counterflowing bosonic and fermionic lithium atoms. First, by tuning the interaction strength we measure the critical velocity v(c) of the system in the BEC-BCS crossover in the low temperature regime and we compare it to the recent prediction of Castin et al., C. R. Phys. 16, 241 (2015). Second, raising the temperature of the mixture slightly above the superfluid transitions reveals an unexpected phase locking of the oscillations of the clouds induced by dissipation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...