Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Virus Res ; 346: 199399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823688

RESUMO

Coronaviruses have caused three severe epidemics since the start of the 21st century: SARS, MERS and COVID-19. The severity of the ongoing COVID-19 pandemic and increasing likelihood of future coronavirus outbreaks motivates greater understanding of factors leading to severe coronavirus disease. We screened ten strains from the Collaborative Cross mouse genetic reference panel and identified strains CC006/TauUnc (CC006) and CC044/Unc (CC044) as coronavirus-susceptible and resistant, respectively, as indicated by variable weight loss and lung congestion scores four days post-infection. We generated a genetic mapping population of 755 CC006xCC044 F2 mice and exposed the mice to one of three genetically distinct mouse-adapted coronaviruses: clade 1a SARS-CoV MA15 (n=391), clade 1b SARS-CoV-2 MA10 (n=274), and clade 2 HKU3-CoV MA (n=90). Quantitative trait loci (QTL) mapping in SARS-CoV MA15- and SARS-CoV-2 MA10-infected F2 mice identified genetic loci associated with disease severity. Specifically, we identified seven loci associated with variation in outcome following infection with either virus, including one, HrS43, that is present in both groups. Three of these QTL, including HrS43, were also associated with HKU3-CoV MA outcome. HrS43 overlaps with a QTL previously reported by our lab that is associated with SARS-CoV MA15 outcome in CC011xCC074 F2 mice and is also syntenic with a human chromosomal region associated with severe COVID-19 outcomes in humans GWAS. The results reported here provide: (a) additional support for the involvement of this locus in SARS-CoV MA15 infection, (b) the first conclusive evidence that this locus is associated with susceptibility across the Sarbecovirus subgenus, and (c) demonstration of the relevance of mouse models in the study of coronavirus disease susceptibility in humans.


Assuntos
COVID-19 , Modelos Animais de Doenças , Locos de Características Quantitativas , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , COVID-19/virologia , Suscetibilidade a Doenças , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Mapeamento Cromossômico , Infecções por Coronavirus/virologia , Feminino , Camundongos de Cruzamento Colaborativo/genética , Predisposição Genética para Doença , Masculino
2.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895248

RESUMO

Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The thirty-two CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary (AR)-EAE, accompanied by distinct immunopathology. Sex differences in EAE severity were observed in six strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity ( Abcc4 and Gpc6 ) and AR-EAE ( Yap1 and Dync2h1 ). This work expands the EAE phenotypic repertoire and identifies novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation. Summary: The genetic basis of disease heterogeneity in multiple sclerosis (MS) remains elusive. We leveraged the Collaborative Cross to expand the phenotypic repertoire of the experimental autoimmune encephalomyelitis (EAE) model of MS and identify loci controlling EAE severity, trajectory, and presentation.

3.
Nat Commun ; 15(1): 3738, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702297

RESUMO

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.


Assuntos
Hidróxido de Alumínio , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas de Produtos Inativados , Animais , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Camundongos , Vacinas de Produtos Inativados/imunologia , SARS-CoV-2/imunologia , Hidróxido de Alumínio/administração & dosagem , Modelos Animais de Doenças , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas , Anticorpos Antivirais/imunologia , Camundongos Endogâmicos BALB C , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia
4.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798314

RESUMO

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. Analysis of addiction model traits in rodents (e.g., opioid behavioral sensitivity and withdrawal) can facilitate genetic and mechanistic discovery. C57BL/6J and C57BL/6NJ substrains have extremely limited genetic diversity, yet can show reliable phenotypic diversity which together, can facilitate gene discovery. The C57BL/6NJ substrain was less sensitive to oxycodone (OXY)-induced locomotor activity compared to the C57BL/6J substrain. Quantitative trait locus (QTL) mapping in an F2 cross identified a distal chromosome 1 QTL explaining 7-12% of the variance in OXY locomotor sensitivity and anxiety-like withdrawal in the elevated plus maze. We identified a second QTL for withdrawal on chromosome 5 near the candidate gene Gabra2 (alpha-2 subunit of GABA-A receptor) explaining 9% of the variance. Next, we generated recombinant lines from an F2 founder spanning the distal chromosome 1 locus (163-181 Mb), captured the QTL for OXY sensitivity and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). There were five striatal cis-eQTL transcripts in this region (Pcp4l1, Ncstn, Atp1a2, Kcnj9, Igsf9), two of which were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9, a.k.a., GIRK3, codes for a potassium channel that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows adaptations following chronic opioid administration. To summarize, we identified genetic sources of opioid behavioral differences in C57BL/6 substrains, two of the most widely and often interchangeably used substrains in opioid addiction research.

5.
Cell Rep ; 43(5): 114127, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652660

RESUMO

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.


Assuntos
Ebolavirus , Predisposição Genética para Doença , Doença pelo Vírus Ebola , Locos de Características Quantitativas , Animais , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/patologia , Locos de Características Quantitativas/genética , Ebolavirus/patogenicidade , Ebolavirus/genética , Camundongos , Camundongos Knockout , Mapeamento Cromossômico , Fígado/patologia , Fígado/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Feminino , Masculino
6.
Artigo em Inglês | MEDLINE | ID: mdl-38670234

RESUMO

BACKGROUND: The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE: This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS: A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS: Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS: Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.

7.
Viruses ; 16(4)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675976

RESUMO

RNA viruses quickly evolve subtle genotypic changes that can have major impacts on viral fitness and host range, with potential consequences for human health. It is therefore important to understand the evolutionary fitness of novel viral variants relative to well-studied genotypes of epidemic viruses. Competition assays are an effective and rigorous system with which to assess the relative fitness of viral genotypes. However, it is challenging to quickly and cheaply distinguish and quantify fitness differences between very similar viral genotypes. Here, we describe a protocol for using reverse transcription PCR in combination with commercial nanopore sequencing services to perform competition assays on untagged RNA viruses. Our assay, called the Universal Competition Assay by Nanopore Sequencing (U-CAN-seq), is relatively cheap and highly sensitive. We used a well-studied N24A mutation in the chikungunya virus (CHIKV) nsp3 gene to confirm that we could detect a competitive disadvantage using U-CAN-seq. We also used this approach to show that mutations to the CHIKV 5' conserved sequence element that disrupt sequence but not structure did not affect the fitness of CHIKV. However, similar mutations to an adjacent CHIKV stem loop (SL3) did cause a fitness disadvantage compared to wild-type CHIKV, suggesting that structure-independent, primary sequence determinants in this loop play an important role in CHIKV biology. Our novel findings illustrate the utility of the U-CAN-seq competition assay.


Assuntos
Vírus Chikungunya , Mutação , Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Humanos , Genótipo , Aptidão Genética , RNA Viral/genética , Animais , Vírus de RNA/genética , Vírus de RNA/classificação , Febre de Chikungunya/virologia
8.
Virus Res ; 344: 199357, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508400

RESUMO

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.


Assuntos
Locos de Características Quantitativas , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Replicação Viral , Estudo de Associação Genômica Ampla , COVID-19/virologia , Proteínas com Motivo Tripartido/genética , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Modelos Animais de Doenças
9.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464063

RESUMO

The MiniMUGA genotyping array is a popular tool for genetic QC of laboratory mice and genotyping of samples from most types of experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA in 2020. Here we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for inbred strains and increase the number of constructs that can reliably be detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have made changes to the layout of the report, to simplify the interpretation and completeness of the analysis and added a table summarizing the ideogram. We believe that these changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.

10.
iScience ; 27(3): 109103, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361611

RESUMO

The response to infection is generally heterogeneous and diverse, with some individuals remaining asymptomatic while others present with severe disease or a diverse range of symptoms. Here, we address the role of host genetics on immune phenotypes and clinical outcomes following viral infection by studying genetically diverse mice from the Collaborative Cross (CC), allowing for use of a small animal model with controlled genetic diversity while maintaining genetic replicates. We demonstrate variation by deeply profiling a broad range of innate and adaptive immune cell phenotypes at steady-state in 63 genetically distinct CC mouse strains and link baseline immune signatures with virologic and clinical disease outcomes following infection of mice with herpes simplex virus 2 (HSV-2) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work serves as a resource for CC strain selection based on steady-state immune phenotypes or disease presentation upon viral infection, and further, points to possible pre-infection immune correlates of survival and early viral clearance upon infection.

11.
Vaccines (Basel) ; 12(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276675

RESUMO

The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.

12.
Hepatology ; 79(1): 183-197, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540195

RESUMO

BACKGROUND AIMS: Human genetic variation is thought to guide the outcome of HCV infection, but model systems within which to dissect these host genetic mechanisms are limited. Norway rat hepacivirus, closely related to HCV, causes chronic liver infection in rats but causes acute self-limiting hepatitis in typical strains of laboratory mice, which resolves in 2 weeks. The Collaborative Cross (CC) is a robust mouse genetics resource comprised of a panel of recombinant inbred strains, which model the complexity of the human genome and provide a system within which to understand diseases driven by complex allelic variation. APPROACH RESULTS: We infected a panel of CC strains with Norway rat hepacivirus and identified several that failed to clear the virus after 4 weeks. Strains displayed an array of virologic phenotypes ranging from delayed clearance (CC046) to chronicity (CC071, CC080) with viremia for at least 10 months. Body weight loss, hepatocyte infection frequency, viral evolution, T-cell recruitment to the liver, liver inflammation, and the capacity to develop liver fibrosis varied among infected CC strains. CONCLUSIONS: These models recapitulate many aspects of HCV infection in humans and demonstrate that host genetic variation affects a multitude of viruses and host phenotypes. These models can be used to better understand the molecular mechanisms that drive hepacivirus clearance and chronicity, the virus and host interactions that promote chronic disease manifestations like liver fibrosis, therapeutic and vaccine performance, and how these factors are affected by host genetic variation.


Assuntos
Hepacivirus , Hepatite C , Camundongos , Humanos , Ratos , Animais , Hepacivirus/genética , Cirrose Hepática/genética , Doença Aguda , Variação Genética
13.
Res Sq ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961507

RESUMO

Inactivated whole virus SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide (Alum) are among the most widely used COVID-19 vaccines globally and have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous virus infection in healthy recipients, the emergence of novel SARS-CoV-2 variants and the presence of large zoonotic reservoirs provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes including vaccine-associated enhanced respiratory disease (VAERD). To evaluate this possibility, we tested the performance of an inactivated SARS-CoV-2 vaccine (iCoV2) in combination with Alum against either homologous or heterologous coronavirus challenge in a mouse model of coronavirus-induced pulmonary disease. Consistent with human results, iCoV2 + Alum protected against homologous challenge. However, challenge with a heterologous SARS-related coronavirus, Rs-SHC014-CoV (SHC014), up to at least 10 months post-vaccination, resulted in VAERD in iCoV2 + Alum-vaccinated animals, characterized by pulmonary eosinophilic infiltrates, enhanced pulmonary pathology, delayed viral clearance, and decreased pulmonary function. In contrast, vaccination with iCoV2 in combination with an alternative adjuvant (RIBI) did not induce VAERD and promoted enhanced SHC014 clearance. Further characterization of iCoV2 + Alum-induced immunity suggested that CD4+ T cells were a major driver of VAERD, and these responses were partially reversed by re-boosting with recombinant Spike protein + RIBI adjuvant. These results highlight potential risks associated with vaccine breakthrough in recipients of Alum-adjuvanted inactivated vaccines and provide important insights into factors affecting both the safety and efficacy of coronavirus vaccines in the face of heterologous virus infections.

14.
iScience ; 26(11): 108348, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026197

RESUMO

Zoonotic arenavirus infections can result in viral hemorrhagic disease, characterized by platelet loss, petechia, and multi-organ injury. The mechanisms governing these outcomes are likely impacted by virus strain and infection dose, as well as an individual's genetic background and immune constitution. To better understand the processes leading to severe pathogenesis, we compared two strains of inbred mice, C57BL/6J (B6) and FVB/NJ (FVB), that have diametrically opposed outcomes during disseminated lymphocytic choriomeningitis virus (LCMV) infection. Infection caused minimal pathogenesis in B6 mice, whereas FVB mice developed acute hepatitis and perished due, in part, to aberrant NK cell and T cell responses. Susceptible mice showed an outgrowth of cytolytic CD4+ T cells and loss of Treg cells. B6 congenic mice with the FVB allele at a 25Mb locus on chromosome 17 recapitulated FVB pathogenesis upon infection. A locus containing a limited number of variants in immune-related genes greatly impacts survival during infection.

15.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745496

RESUMO

Background: The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, unlike C3H/HeJ (C3H) mice. Objective: To determine the genetic basis of orally-induced anaphylaxis to peanut in CC027 mice. Methods: A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 and five additional CC strains. Results: Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis, and 4% having severe anaphylaxis. A total of eight genetic loci were associated with variation in response to peanut challenge, six associated with anaphylaxis (temperature decrease) and two associated with peanut-specific IgE levels. There were two major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis (thymocyte-expressed molecule involved in selection) gene. Consistent with Themis' described functions, we found that CC027 have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. Conclusion: Our results demonstrate a key role for Themis in the orally-reactive CC027 mouse model of peanut allergy.

16.
J Cereb Blood Flow Metab ; 43(11): 1983-2004, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37572089

RESUMO

Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Collateral number in skeletal muscle and intestine of selected high- and low-collateral strains evidenced the same relative abundance as in brain. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. Six additional suggestive QTL (LOD > 4.5) were also identified in CC-wide QTL mapping. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.


Assuntos
Encéfalo , Locos de Características Quantitativas , Humanos , Camundongos , Animais , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Encéfalo/irrigação sanguínea , Circulação Colateral/genética , Isquemia/genética
17.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398475

RESUMO

Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.

18.
J Virol ; 97(7): e0071523, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310228

RESUMO

Powassan virus (POWV) is an emerging tick-borne flavivirus that causes neuroinvasive diseases, including encephalitis, meningitis, and paralysis. Similar to other neuroinvasive flaviviruses, such as West Nile virus (WNV) and Japanese encephalitis virus (JEV), POWV disease presentation is heterogeneous, and the factors influencing disease outcome are not fully understood. We used Collaborative Cross (CC) mice to assess the impact of host genetic factors on POWV pathogenesis. We infected a panel of Oas1b-null CC lines with POWV and observed a range of susceptibility, indicating that host factors other than the well-characterized flavivirus restriction factor Oas1b modulate POWV pathogenesis in CC mice. Among the Oas1b-null CC lines, we identified multiple highly susceptible lines (0% survival), including CC071 and CC015, and two resistant lines, CC045 and CC057 (>75% survival). The susceptibility phenotypes generally were concordant among neuroinvasive flaviviruses, although we did identify one line, CC006, that was specifically resistant to JEV, suggesting that both pan-flavivirus and virus-specific mechanisms contribute to susceptibility phenotypes in CC mice. We found that POWV replication was restricted in bone marrow-derived macrophages from CC045 and CC057 mice, suggesting that resistance could result from cell-intrinsic restriction of viral replication. Although serum viral loads at 2 days postinfection were equivalent between resistant and susceptible CC lines, clearance of POWV from the serum was significantly enhanced in CC045 mice. Furthermore, CC045 mice had significantly lower viral loads in the brain at 7 days postinfection than did CC071 mice, suggesting that reduced central nervous system (CNS) infection contributes to the resistant phenotype of CC045 mice. IMPORTANCE Neuroinvasive flaviviruses, such as WNV, JEV, and POWV, are transmitted to humans by mosquitoes or ticks and can cause neurologic diseases, such as encephalitis, meningitis, and paralysis, and they can result in death or long-term sequelae. Although potentially severe, neuroinvasive disease is a rare outcome of flavivirus infection. The factors that determine whether someone develops severe disease after a flavivirus infection are not fully understood, but host genetic differences in polymorphic antiviral response genes likely contribute to the outcome of infection. We evaluated a panel of genetically diverse mice and identified lines with distinct outcomes following infection with POWV. We found that resistance to POWV pathogenesis corresponded to reduced viral replication in macrophages, more rapid clearance of virus in peripheral tissues, and reduced viral infection in the brain. These susceptible and resistant mouse lines will provide a system for investigating the pathogenic mechanisms of POWV and identifying polymorphic host genes that contribute to resistance.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite , Infecções por Flavivirus , Flavivirus , Vírus do Nilo Ocidental , Humanos , Camundongos , Animais , Flavivirus/genética , Camundongos de Cruzamento Colaborativo , Infecções por Flavivirus/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Vírus da Encefalite Japonesa (Espécie)/genética , Suscetibilidade a Doenças , Paralisia , 2',5'-Oligoadenilato Sintetase/genética
19.
Nat Commun ; 14(1): 3286, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311745

RESUMO

Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.


Assuntos
COVID-19 , Longevidade , Feminino , Humanos , Envelhecimento , Inflamação , Avaliação de Resultados em Cuidados de Saúde
20.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200108

RESUMO

Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Humanos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/genética , Patrimônio Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...