Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 103(6-1): 062608, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271759

RESUMO

We report Brownian dynamics simulation results for the relative permittivity of electrorheological (ER) fluids in an applied electric field. The relative permittivity of an ER fluid can be calculated from the Clausius-Mosotti (CM) equation in the small applied field limit. When a strong field is applied, however, the ER spheres are organized into chains and assemblies of chains in which case the ER spheres are polarized not only by the external field but by each other. This manifests itself in an enhanced dielectric response, e.g., in an increase in the relative permittivity. The correction to the relative permittivity and the time dependence of this correction is simulated on the basis of a model in which the ER particles are represented as polarizable spheres. In this model, the spheres are also polarized by each other in addition to the applied field. Our results are qualitatively similar to those obtained by Horváth and Szalai experimentally [Phys. Rev. E 86, 061403 (2012)PLEEE81539-375510.1103/PhysRevE.86.061403]. We report characteristic time constants obtained from biexponential fits that can be associated with the formation of pairs and short chains as well as with the aggregation of chains. The electric field dependence of the induced dielectric increment reveals the same qualitative behavior that experiments did: three regions with different slopes corresponding to different aggregation processes are identified.

2.
J Chem Phys ; 154(15): 154704, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887923

RESUMO

Scaling of the behavior of a nanodevice means that the device function (selectivity) is a unique smooth and monotonic function of a scaling parameter that is an appropriate combination of the system's parameters. For the uniformly charged cylindrical nanopore studied here, these parameters are the electrolyte concentration, c, voltage, U, the radius and the length of the nanopore, R and H, and the surface charge density on the nanopore's surface, σ. Due to the non-linear dependence of selectivities on these parameters, scaling can only be applied in certain limits. We show that the Dukhin number, Du=|σ|/eRc∼|σ|λD 2/eR (λD is the Debye length), is an appropriate scaling parameter in the nanotube limit (H → ∞). Decreasing the length of the nanopore, namely, approaching the nanohole limit (H → 0), an alternative scaling parameter has been obtained, which contains the pore length and is called the modified Dukhin number: mDu ∼ Du H/λD ∼ |σ|λDH/eR. We found that the reason for non-linearity is that the double layers accumulating at the pore wall in the radial dimension correlate with the double layers accumulating at the entrances of the pore near the membrane on the two sides. Our modeling study using the Local Equilibrium Monte Carlo method and the Poisson-Nernst-Planck theory provides concentration, flux, and selectivity profiles that show whether the surface or the volume conduction dominates in a given region of the nanopore for a given combination of the variables. We propose that the inflection point of the scaling curve may be used to characterize the transition point between the surface and volume conductions.

3.
Phys Chem Chem Phys ; 22(34): 19033-19045, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32812580

RESUMO

Bipolar nanopores have powerful rectification properties due to the asymmetry in the charge pattern on the wall of the nanopore. In particular, bipolar nanopores have positive and negative surface charges along the pore axis. Rectification is strong if the radius of the nanopore is small compared to the screening length of the electrolyte so that both cations and anions have depletion zones in the respective regions. The depths of these depletion zones is sensitive to sign of the external voltage. In this work, we are interested in the effect of the presence of strong ionic correlations (both between ions and between ions and surface charge) due to the presence of multivalent ions and large surface charges. We show that strong ionic correlations cause leakage of the coions, a phenomenon that is absent in mean field theories. In this modeling study, we use both the mean-field Poisson-Nernst-Planck (PNP) theory and a particle simulation method, Local Equilibrium Monte Carlo (LEMC), to show that phenomena such as overcharging and charge inversion cannot be reproduced with PNP, while LEMC is able to produce nonmonotonic dependence of currents and rectification as a function of surface charge strength.

5.
J Chem Phys ; 150(14): 144703, 2019 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-30981242

RESUMO

We report a multiscale modeling study for charged cylindrical nanopores using three modeling levels that include (1) an all-atom explicit-water model studied with molecular dynamics, and reduced models with implicit water containing (2) hard-sphere ions studied with the Local Equilibrium Monte Carlo simulation method (computing ionic correlations accurately), and (3) point ions studied with Poisson-Nernst-Planck theory (mean-field approximation). We show that reduced models are able to reproduce device functions (rectification and selectivity) for a wide variety of charge patterns, that is, reduced models are useful in understanding the mesoscale physics of the device (i.e., how the current is produced). We also analyze the relationship of the reduced implicit-water models with the explicit-water model and show that diffusion coefficients in the reduced models can be used as adjustable parameters with which the results of the explicit- and implicit-water models can be related. We find that the values of the diffusion coefficients are sensitive to the net charge of the pore but are relatively transferable to different voltages and charge patterns with the same total charge.

6.
Langmuir ; 33(14): 3534-3547, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28290695

RESUMO

Surface modifications fundamentally influence the morphology of kaolinite nanostructures as a function of crystallinity and the presence of contaminants. Besides morphology, the catalytic properties of 1:1-type exfoliated aluminosilicates are also influenced by the presence of defect sites that can be generated in a controlled manner by mechanochemical activation. In this work, we investigated exfoliated halloysite nanoparticles with a quasi-homogeneous, scroll-type secondary structure toward developing structural/functional relationships for composition, atomic structure, and morphology. The surface properties of thin-walled nanoscrolls were studied as a function of mechanochemical activation expressed by the duration of dry-grinding. The surface characterizations were carried out using N2, NH3, and CO2 adsorption measurements. The effects of grinding on the nanohalloysite structure were followed using thermoanalytical thermogravimetric/derivative thermogravimetric (TG/DTG) and infrared spectroscopic [Fourier transform infrared/attenuated total reflection (FTIR/ATR)] techniques. Grinding results in partial dehydroxylation with similar changes as those observed for heat treatment above 300 °C. Mechanochemical activation shows a decrease in the dehydroxylation mass loss and the DTG peak temperature, a decrease in the specific surface area and the number of mesopores, an increase in the surface acidity, blue shift of surface hydroxide bands, and a decrease in the intensity of FTIR/ATR bands as a function of the grinding time. The experimental observations were used to guide atomic-scale structural and energetic simulations using realistic molecular cluster models for a nanohalloysite particle. A full potential energy surface description was developed for the mechanochemical activation and/or heating toward nanometahalloysite formation that aids the interpretation of experimental results. The calculated differences upon dehydroxylation show a remarkable agreement with the mass loss values from DTG measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...