Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(5): e202300167, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37161701

RESUMO

AC1-004 is a potent inhibitor of the hypoxia-inducible factor alpha (HIF-1α) pathway, essential for tumour growth, angiogenesis and metastasis. We modelled a series of gold(I) complexes on AC1-004, retaining its 5-carboalkoxybenzimidazole as an NHC ligand while replacing its 2-aryloxymethyl residue with modified thiolato gold(I) fragments. The intention was to augment a potential HIF-1α inhibition by conducive effects typical of NHC gold complexes, such as an inhibition of tumoural thioredoxin reductase (TrxR), an increase in reactive oxygen species (ROS), and cytotoxic and antiangiogenic effects. We report on the synthesis and biological effects of twelve such N,N'-dialkylbenzimidazol-2-ylidene gold(I) complexes, obtained in average yields of 65 % for the thiophenolato and 45 % for the novel 4-(adamant-2-yl)benzenethiol complexes. The structure of one complex was validated via single-crystal X-ray diffraction. Structure-activity relationships (SAR) were derived by variation of the N-substituents (Me, Et, iPr, pentyl, Bn) and the thiolato ligand. Their cytotoxicity against various human cancer cell lines of different entities reached IC50 values in the single-digit micromolar range. The complexes were also assayed for the induction of tumour cell apoptosis (activation of caspase-3/7), TrxR inhibition and antiangiogenic effects in zebrafish. Cyclopropene-bearing congeners were employed in click reactions to examine the subcellular accumulation of the complexes.


Assuntos
Complexos de Coordenação , Neoplasias , Animais , Humanos , Ouro/química , Ligantes , Peixe-Zebra/metabolismo , Complexos de Coordenação/química , Proliferação de Células , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxina Dissulfeto Redutase/farmacologia , Oxirredução
2.
Nat Commun ; 14(1): 595, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737444

RESUMO

The discovery of reactions is a central topic in chemistry and especially interesting if access to compound classes, which have not yet been synthesized, is permitted. N-Heterocyclic compounds are very important due to their numerous applications in life and material science. We introduce here a consecutive three-component reaction, classes of N-heterocyclic compounds, and the associated synthesis concept (regenerative cyclisation). Our reaction starts with a diamine, which reacts with an amino alcohol via dehydrogenation, condensation, and cyclisation to form a new pair of amines that undergoes ring closure with an aldehyde, carbonyldiimidazole, or a dehydrogenated amino alcohol. Hydrogen is liberated in the first reaction step and the dehydrogenation catalyst used is based on manganese.

3.
Angew Chem Int Ed Engl ; 59(29): 11789-11793, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32187785

RESUMO

The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C-N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation-sensitive examples. Compared to many other alcohol-based amine alkylation methods, where a stoichiometric amount of base is required, our Cr-based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...