Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(3): 873-880, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207217

RESUMO

Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect paramagnetic centers in cells with a favorable combination of magnetic sensitivity and spatial resolution. Here, we employ NV magnetic relaxometry to detect cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that plays a vital role in the electron transport chain of mitochondria. Under ambient conditions, the heme group in Cyt-C remains in the Fe3+ state, which is paramagnetic. We vary the concentration of Cyt-C from 6 to 54 µM and observe a reduction of the NV spin-lattice relaxation time (T1) from 1.2 ms to 150 µs, which is attributed to the spin noise originating from the Fe3+ spins. NV T1 imaging of Cyt-C drop-casted on a nanostructured diamond chip allows us to detect the relaxation rates from the adsorbed Fe3+ within Cyt-C.


Assuntos
Citocromos c , Nitrogênio , Magnetismo , Diamante , Fenômenos Magnéticos
2.
Opt Express ; 31(11): 17950-17963, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381516

RESUMO

Many modern applications, including quantum computing and quantum sensing, use substrate-film interfaces. Particularly, thin films of chromium or titanium and their oxides are commonly used to bind various structures, such as resonators, masks, or microwave antennas, to a diamond surface. Due to different thermal expansions of involved materials, such films and structures could produce significant stresses, which need to be measured or predicted. In this paper, we demonstrate imaging of stresses in the top layer of diamond with deposited structures of Cr2O3 at temperatures 19°C and 37°C by using stress-sensitive optically detected magnetic resonances (ODMR) in NV centers. We also calculated stresses in the diamond-film interface by using finite-element analysis and correlated them to measured ODMR frequency shifts. As predicted by the simulation, the measured high-contrast frequency-shift patterns are only due to thermal stresses, whose spin-stress coupling constant along the NV axis is 21±1 MHz/GPa, that is in agreement with constants previously obtained from single NV centers in diamond cantilever. We demonstrate that NV microscopy is a convenient platform for optically detecting and quantifying spatial distributions of stresses in diamond-based photonic devices with micrometer precision and propose thin films as a means for local application of temperature-controlled stresses. Our results also show that thin-film structures produce significant stresses in diamond substrates, which should be accounted for in NV-based applications.

3.
Sci Adv ; 9(24): eadh3189, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327342

RESUMO

Radio frequency (RF) magnetometers based on nitrogen vacancy centers in diamond are predicted to offer femtotesla sensitivity, but previous experiments were limited to the picotesla level. We demonstrate a femtotesla RF magnetometer using a diamond membrane inserted between ferrite flux concentrators. The device provides ~300-fold amplitude enhancement for RF magnetic fields from 70 kHz to 3.6 MHz, and the sensitivity reaches ~70 fT√s at 0.35 MHz. The sensor detected the 3.6-MHz nuclear quadrupole resonance (NQR) of room-temperature sodium nitrite powder. The sensor's recovery time after an RF pulse is ~35 µs, limited by the excitation coil's ring-down time. The sodium-nitrite NQR frequency shifts with temperature as -1.00±0.02 kHz/K, the magnetization dephasing time is T2*=887±51 µs, and multipulse sequences extend the signal lifetime to 332±23 ms, all consistent with coil-based studies. Our results expand the sensitivity frontier of diamond magnetometers to the femtotesla range, with potential applications in security, medical imaging, and materials science.


Assuntos
Diamante , Nitrogênio , Espectroscopia de Ressonância Magnética/métodos , Temperatura
4.
ACS Nano ; 17(9): 8694-8704, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093121

RESUMO

[Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II) and are considered to be diamagnetic and paramagnetic, respectively. The Fe(II) LS state has six paired electrons in the ground states with no interaction with the magnetic field and a diamagnetic behavior is usually observed. While the bulk magnetic properties of Fe-triazole compounds are widely studied by standard magnetometry techniques, their magnetic properties at the individual level are missing. Here we use nitrogen vacancy (NV) based magnetometry to study the magnetic properties of the Fe-triazole LS state of nanoparticle clusters and individual nanorods of size varying from 20 to 1000 nm. Scanning electron microscopy (SEM) and Raman spectroscopy are performed to determine the size of the nanoparticles/nanorods and to confirm their respective spin states. The magnetic field patterns produced by the nanoparticles/nanorods are imaged by NV magnetic microscopy as a function of applied magnetic field (up to 350 mT) and correlated with SEM and Raman. We found that in most of the nanorods the LS state is slightly paramagnetic, possibly originating from the surface oxidation and/or the greater Fe(III) presence along the nanorods' edges. NV measurements on the Fe-triazole LS state nanoparticle clusters revealed both diamagnetic and paramagnetic behavior. Our results highlight the potential of NV quantum sensors to study the magnetic properties of spin crossover molecules and molecular magnets.

6.
Ultramicroscopy ; 242: 113624, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36215942

RESUMO

In this work, we present a novel, compact, power efficient and variable magnetic field source design for magnetic field imaging microscopy. The device is based on a pair of diametrically magnetized permanent magnet cylinders with electro-mechanical rotation control and ferrite flux homogenizers. A Hall probe and NV centers in diamond are used to demonstrate a proof of concept of a proposed magnetic field setup and to characterize the homogeneity of the produced magnetic field on a micrometer scale. Numerical simulation results are compared with experimental results showing good agreement of the distribution of the magnetic field in the setup. As a result, a magnetic field source with a tunable field amplitude in the range from 1 mT to 222 mT is demonstrated, achieving a magnetic field homogeneity of 2 ppm/µm or 0.5 µT/µm at 222 mT in a 25 × 25 µm field of view.

7.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808069

RESUMO

The implantation of diamonds with helium ions has become a common method to create hundreds-nanometers-thick near-surface layers of NV centers for high-sensitivity sensing and imaging applications; however, optimal implantation dose and annealing temperature are still a matter of discussion. In this study, we irradiated HPHT diamonds with an initial nitrogen concentration of 100 ppm using different implantation doses of helium ions to create 200-nm thick NV layers. We compare a previously considered optimal implantation dose of ∼1012 He+/cm2 to double and triple doses by measuring fluorescence intensity, contrast, and linewidth of magnetic resonances, as well as longitudinal and transversal relaxation times T1 and T2. From these direct measurements, we also estimate concentrations of P1 and NV centers. In addition, we compare the three diamond samples that underwent three consequent annealing steps to quantify the impact of processing at 1100 °C, which follows initial annealing at 800 °C. By tripling the implantation dose, we have increased the magnetic sensitivity of our sensors by 28±5%. By projecting our results to higher implantation doses, we demonstrate that it is possible to achieve a further improvement of up to 70%. At the same time, additional annealing steps at 1100 °C improve the sensitivity only by 6.6 ± 2.7%.

8.
RSC Adv ; 13(1): 178-185, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605625

RESUMO

We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial Cr2O3 thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, i.e., cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak parasitic magnetic moment in Cr2O3 films that originates from defects and the imbalance of the boundary magnetization of opposing interfaces. This boundary magnetization couples to the antiferromagnetic order parameter enabling selection of its orientation. Nanostructuring the Cr2O3 film with mesa structures revealed reversible edge magnetic states with the direction of magnetic field during field cooling.

9.
Phys Rev Res ; 2(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117992

RESUMO

Magnetometers based on nitrogen-vacancy (NV) centers in diamond are promising room-temperature, solid-state sensors. However, their reported sensitivity to magnetic fields at low frequencies (≾1 kHz) is presently ≿10 pT s1/2, precluding potential applications in medical imaging, geoscience, and navigation. Here we show that high-permeability magnetic flux concentrators, which collect magnetic flux from a larger area and concentrate it into the diamond sensor, can be used to improve the sensitivity of diamond magnetometers. By inserting an NV-doped diamond membrane between two ferrite cones in a bowtie configuration, we realize a ~250-fold increase of the magnetic field amplitude within the diamond. We demonstrate a sensitivity of ~0.9 pT s1/2 to magnetic fields in the frequency range between 10 and 1000 Hz. This is accomplished using a dual-resonance modulation technique to suppress the effect of thermal shifts of the NV spin levels. The magnetometer uses 200 mW of laser power and 20 mW of microwave power. This work introduces a new degree of freedom for the design of diamond sensors by using structured magnetic materials to manipulate magnetic fields.

10.
Sci Adv ; 5(7): eaaw7895, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360769

RESUMO

Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micrometer-scale detection volume and noninductive-based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 ± 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ∼40-picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a major step toward applications in mass-limited chemical analysis and single-cell biology.

11.
Phys Rev Appl ; 11(3)2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31245433

RESUMO

Magnetic microscopy of malarial hemozoin nanocrystals is performed by optically detected magnetic resonance imaging of near-surface diamond nitrogen-vacancy centers. Hemozoin crystals are extracted from Plasmodium falciparum-infected human blood cells and studied alongside synthetic hemozoin crystals. The stray magnetic fields produced by individual crystals are imaged at room temperature as a function of the applied field up to 350 mT. More than 100 nanocrystals are analyzed, revealing the distribution of their magnetic properties. Most crystals (96%) exhibit a linear dependence of the stray-field magnitude on the applied field, confirming hemozoin's paramagnetic nature. A volume magnetic susceptibility of 3.4 × 10-4 is inferred with use of a magnetostatic model informed by correlated scanning-electron-microscopy measurements of crystal dimensions. A small fraction of nanoparticles (4/82 for Plasmodium falciparum-produced nanoparticles and 1/41 for synthetic nanoparticles) exhibit a saturation behavior consistent with superparamagnetism. Translation of this platform to the study of living Plasmodium-infected cells may shed new light on hemozoin formation dynamics and their interaction with antimalarial drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...