Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(6): 1029-1039, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38284984

RESUMO

Both identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation in CpG context (5mCpG) and cytosine hydroxymethylation (5hmCpG) are DNA modifications that identify stable cell phenotypes, but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a method to profile Th cell identity using Cas9-targeted single-molecule nanopore sequencing. Targeting as few as 10 selected genomic loci, we were able to distinguish major in vitro polarized murine T cell subtypes, as well as intermediate phenotypes, by their native DNA 5mCpG patterns. Moreover, by using off-target sequences, we were able to infer transcription factor activities relevant to each cell subtype. Detection of 5mCpG and 5hmCpG was validated on intestinal Th17 cells escaping transforming growth factor ß control, using single-molecule adaptive sampling. A total of 21 differentially methylated regions mapping to the 10-gene panel were identified in pathogenic Th17 cells relative to their nonpathogenic counterpart. Hence, our data highlight the potential to exploit native DNA methylation profiling to study physiological and pathological transition states of Th cells.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Camundongos , Citosina , DNA/metabolismo , Células Th17/metabolismo
2.
Immunohorizons ; 6(7): 515-527, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35878935

RESUMO

Murine peripheral lymph node TCR γδ T cells have been divided into type 1 and type 17 functional categories based on phenotypic and functional markers. Localized in the gut epithelial barrier, intestinal intraepithelial lymphocytes (iIEL) γδ T cells constitute a peculiar subset of T lymphocytes involved in intestinal homeostasis. However, whether iIEL γδ T cells obey the type 1/type 17 dichotomy is unclear. Using both global transcriptional signatures and expression of cell surface markers, we reveal that murine iIEL γδ T cells compose a distinct population, expressing ∼1000 specific genes, in particular genes that are responsible for cytotoxicity and regulatory functions. The expression of the transcription factor Helios is a feature of iIEL γδ T cells, distinguishing them from the other TCR γδ T subsets, including those present in the epithelia of other tissues. The marked expression of Helios is also shared by the other iIELs, TCRαßCD8αα lymphocytes present within the intestinal epithelium. Finally, we show that Helios expression depends in part on TGF-ß signaling but not on the microbiota. Thus, our study proposes iIEL γδ T cells as a distinct subset and identifies novel markers to differentiate them from their peripheral counterparts.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Animais , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T/metabolismo
3.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439168

RESUMO

CD4+ Th cells play a key role in orchestrating immune responses, but the identity of the CD4+ Th cells involved in the antitumor immune response remains to be defined. We analyzed the immune cell infiltrates of head and neck squamous cell carcinoma and colorectal cancers and identified a subset of CD4+ Th cells distinct from FOXP3+ Tregs that coexpressed programmed cell death 1 (PD-1) and ICOS. These tumor-infiltrating lymphocyte CD4+ Th cells (CD4+ Th TILs) had a tissue-resident memory phenotype, were present in MHC class II-rich areas, and proliferated in the tumor, suggesting local antigen recognition. The T cell receptor repertoire of the PD-1+ICOS+ CD4+ Th TILs was oligoclonal, with T cell clones expanded in the tumor, but present at low frequencies in the periphery. Finally, these PD-1+ICOS+ CD4+ Th TILs were shown to recognize both tumor-associated antigens and tumor-specific neoantigens. Our findings provide an approach for isolating tumor-reactive CD4+ Th TILs directly ex vivo that will help define their role in the antitumor immune response and potentially improve future adoptive T cell therapy approaches.


Assuntos
Neoplasias de Cabeça e Pescoço , Receptor de Morte Celular Programada 1 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis , Linfócitos do Interstício Tumoral , Receptor de Morte Celular Programada 1/genética
4.
Cell Rep ; 19(11): 2357-2370, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614720

RESUMO

T helper-17 (Th17) cells are associated with inflammatory disorders and cancer. We report that environmental conditions resulting in cellular stress, such as low oxygen, glucose, and isotonic stress, particularly enhance the generation of Th17 cells. Pharmacological inhibition of cell stress reduces Th17 cell differentiation while stress inducers enhance the development of Th17 cells. The cellular stress response results in Th17 cell development via sustained cytoplasmic calcium levels and, in part, XBP1 activity. Furthermore, in an inflammatory environment, conditions resulting in cell stress can bring about de novo Th17 cell differentiation, even in the absence of transforming growth factor ß (TGF-ß) signaling. In vivo, cell stress inhibition enhances resistance to Th17-mediated autoimmunity while stress-exposed T cells enhance disease severity. Adverse metabolic environments during inflammation provide a link between adaptive immunity and inflammation and may represent a risk factor for the development of chronic inflammatory conditions by facilitating Th17 cell differentiation.


Assuntos
Células Th17/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...