Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242104

RESUMO

Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.

2.
Int J Pharm ; 601: 120538, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33781879

RESUMO

The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.


Assuntos
Nanopartículas , Óleos Voláteis , Humanos , Lipídeos , Lipossomos , Óleos de Plantas , Polímeros
3.
Int J Pharm ; 593: 120138, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33278497

RESUMO

Plant-based remedies have been widely used for the management of variable diseases due to their safety and less side effects. In the present study, we investigated Saussurea lappa CB. Clarke. (SL) given its largely reported medicinal effects. Specifically, our objective was to provide an insight into a new polymethyl methacrylate based nanocapsules as carriers of SL essential oil and characterize their biologic functions. The nanoparticles were prepared by nanoprecipitation technique, characterized and analyzed for their cytotoxicity, anti-inflammatory, anti-Alzheimer and antidiabetic effects. The results revealed that the developed nanoparticles had a diameter around 145 nm, a polydispersity index of 0.18 and a zeta potential equal to +45 mV and they did not show any cytotoxicity at 25 µg·mL-1. The results also showed an anti-inflammatory activity (reduction in metalloprotease MMP-9 enzyme activity and RNA expression of inflammatory cytokines: TNF-α, GM-CSF and IL1ß), a high anti-Alzheimer's effect (IC50 around 25.0 and 14.9 µg·mL-1 against acetylcholinesterase and butyrylcholinesterase, respectively), and a strong antidiabetic effect (IC50 were equal to 22.9 and 75.8 µg·mL-1 against α-amylase and α-glucosidase, respectively). Further studies are required including the in vivo studies (e.g., preclinical), the pharmacokinetic properties, the bioavailability and the underlying associated metabolic pathways.


Assuntos
Nanocápsulas , Óleos Voláteis , Saussurea , Anti-Inflamatórios/farmacologia , Inibidores da Colinesterase/farmacologia , Hipoglicemiantes/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais
4.
Biomater Sci ; 8(20): 5715-5728, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935704

RESUMO

Suspensions of iodinated polymer nanoparticles are evaluated as contrast agent for Computed Tomography (CT) and Spectral Photon Counting Computed Tomography (SPCCT). Iodine containing moieties are grafted to poly(vinyl alcohol) by means of a covalent ester bond up to high degree of substitution of 0.77 providing high iodine content of 71 wt%. Polymer nanoparticles of 150 nm diameter stabilized by the block copolymer poly(caprolactone)-b-poly(ethylene glycol) are highly stable in water and human serum. High coverage of nanoparticles by PEG chains in a dense brush conformation (0.30 molecules·nm-2) provides resistance against fast elimination by mononuclear phagocytes system. Iodine concentration is increased up to 100 mg(i)·mL-1 by a centrifugation/redispersion step, which sets radiopacity of the contrast agent in the right range for imaging cardiovascular system and biodistribution. SPCCT 'Material Decomposition' and 'K-edge reconstruction' methods allow accurate quantification of iodine, as well as specific discrimination of iodine and gadolinium in mixed phantom samples. Intravenous injection of iodinated polymer nanoparticles to rats provides a clear visualization of the cardiovascular system over several hours followed by progressive accumulation in liver and spleen. This material is a 'blood pool' contrast agent with very long residence time in the blood stream.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Polímeros , Ratos , Distribuição Tecidual , Tomografia Computadorizada por Raios X
5.
Int J Pharm ; 586: 119581, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32603838

RESUMO

Peptides are therapeutic molecules with high potential to treat a wide variety of diseases. They are large hydrophilic compounds for which absorption is limited by the intestinal epithelial border covered by mucus. This study aimed to evaluate the potential of Hydrophobic Ion Pairing combined with Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) to improve peptide transport across the intestinal border using Caco-2 cell monolayers (enterocyte-like model) and Caco-2/HT29-MTX co-cultured monolayers (mucin-secreting model). A Hydrophobic Ion Pair (HIP) was formed between Leuprolide (LEU), a model peptide, and sodium docusate. The marked increase in peptide lipophilicity enabled high encapsulation efficiencies in both NLC (84%) and SLN (85%). After co-incubation with the nanoparticles, confocal microscopy images of the cell monolayers demonstrated particles internalization and ability to cross mucus. Flow cytometry measurements confirmed that 82% of incubated SLN and 99% of NLC were internalized by Caco-2 cells. However, LEU transport across cell monolayers was not improved by the nanocarriers. Indeed, combination of particles platelet-shape and HIP low stability in the transport medium led to LEU burst release in this environment. Improvement of peptide lipidization should maintain encapsulation and enable benefit from nanocarriers enhanced intestinal transport.


Assuntos
Portadores de Fármacos/química , Leuprolida/farmacocinética , Lipídeos/química , Nanoestruturas , Células CACO-2 , Técnicas de Cocultura , Ácido Dioctil Sulfossuccínico/química , Células HT29 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal , Mucosa Intestinal/metabolismo , Leuprolida/administração & dosagem , Leuprolida/química , Muco/metabolismo , Nanopartículas , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/farmacocinética
6.
Int J Pharm ; 579: 119150, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070757

RESUMO

The use of proteins and defined amino acid sequences as therapeutic drugs have gained a certain interest in the past decade. However, protein encapsulation within protein nanoparticles was never endeavored. For this reason, human serum albumin (HSA) nanoparticles were prepared by nanoprecipitation method. The process was optimized, and particles were obtained with a size of 120 nm and zeta potential of -25 mV. Neutrophil elastase (NE) and secretory leukocyte protease inhibitor (SLPI) were encapsulated separately within HSA nanoparticles. Gel electrophoresis and western blot studies demonstrate the successful encapsulation and the stability of the particles. On the other hand, enzymatic assays show that encapsulated NE lost its proteolytic activity, whereas encapsulated SLPI maintained its inhibitory property. In addition, the antibacterial studies showed that both formulations were able to drastically reduce bacterial growth of Pseudomonas aeruginosa. This work showed the possibility of using both NE and SLPI as anti-bacterial agents through encapsulation within HSA nanoparticles.


Assuntos
Antibacterianos/administração & dosagem , Portadores de Fármacos/química , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Albumina Sérica Humana/química , Antibacterianos/química , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Ensaios Enzimáticos , Humanos , Elastase de Leucócito/administração & dosagem , Elastase de Leucócito/química , Testes de Sensibilidade Microbiana , Nanopartículas/química , Estabilidade Proteica , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Inibidor Secretado de Peptidases Leucocitárias/administração & dosagem , Inibidor Secretado de Peptidases Leucocitárias/química
7.
Polymers (Basel) ; 11(6)2019 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181851

RESUMO

In the last few years, essential oils (EOs) derived from plants have aroused great interest due to their well-known antimicrobial activity. Unfortunately, they present several limitations in their use, such as photosensitivity, temperature sensitivity, high volatility, and poor water solubility. The encapsulation technique represents a good solution to these problems and ensures protection of the functional properties of essential oils. In this work, bergamot essential oil (BEO) and sweet orange essential oil (OEO) loaded-Eudragit® RS 100 (EuRS100) nanoparticles (NPs) were prepared by using the nanoprecipitation technique. We obtained nanoparticles characterized by a mean diameter of 57 to 208 nm and a positive surface charge (39 to 74 mV). The antibacterial activity of the obtained systems against Escherichia coli was in vitro investigated. We demonstrated that both orange and bergamot essential oils were successfully encapsulated and our nanoparticles have good antibacterial activity. Finally, in order to evaluate the potential applicability of OEONps to prolong fresh orange juice shelf-life, survival of E. coli during a storage period of one week at 25 °C was investigated: Orange essential oil-loaded nanoparticles (OEONPs) have been able to prolong the orange juice shelf life.

8.
Int J Pharm ; 565: 409-418, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31100381

RESUMO

Peptides are rarely orally administrated due to rapid degradation in the gastrointestinal tract and low absorption at the epithelial border. The objective of this study was to encapsulate a model water-soluble peptide in biodegradable and biocompatible solid lipid-based nanoparticles, i.e. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in order to protect it from metabolic degradation. Leuprolide (LEU) and a LEU-docusate Hydrophobic Ion Pair (HIP) were encapsulated in SLN and NLC by High Pressure Homogenization. The particles were characterized regarding their Encapsulation Efficiency (EE), size, morphology, peptide release in FaSSIF-V2, and protective effect towards proteases. Nanoparticles of 120 nm with platelet structures were obtained. Formation of HIP led to a significant increase in LEU EE. Particle size was moderately affected by the presence of simulated fluids. Nonetheless, an important burst release was observed upon dispersion in FaSSIF-V2. NLC were able to improve LEU-HIP resistance to enzymatic degradation induced by trypsin but presented no advantages in presence of α-chymotrypsin. SLN provided no protection regarding both proteases. Despite an increased amount of encapsulated peptide in solid lipid-based nanoparticles following HIP formation, the important specific surface area linked to their platelet structures resulted in an important peptide release upon dispersion in FaSSIF-V2 and limited protection towards enzymatic degradation.


Assuntos
Ácido Dioctil Sulfossuccínico/química , Leuprolida/química , Lipídeos/química , Nanopartículas/química , Tensoativos/química , Quimotripsina/química , Liberação Controlada de Fármacos , Trato Gastrointestinal/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Tripsina/química
9.
J Pharm Sci ; 108(8): 2708-2717, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30946842

RESUMO

Nanoemulsions are of great interest for pharmaceutical applications, including parenteral dosage forms. However, their production is still limited and requires more efficient and adaptive technologies. The more common systems are high-shear homogenization such as microfludizers at industrial scale and ultrasounds at research scale, both based on high energy, limiting their application for sensitive drugs. Recently a process based on premix membrane emulsification (PME) was developed to produce nanoemulsions. These 3 processes have been compared for the production of a model parenteral nanoemulsion containing all-trans retinoic acid, a thermolabile molecule that is used in the treatment of acute promyelocytic leukemia in a parenteral form. Droplet size and active integrity were studied because of their major interest for efficacy and safety assessment. Regarding droplet size, PME produced monodispersed droplets of 335 nm compared with the other processes that produced nanoemulsions of around 150 nm but with the presence of micron-size droplets detected by laser diffraction and optical microscopy. No real difference between the 3 processes was observed on active degradation during emulsifcation. However regarding stability, especially at 40°C, nanoemulsions obtained with the microfluidizer showed a greater molecule degradation and unstable nanoemulsion with a 4-times droplet size increase under stress conditions.


Assuntos
Antineoplásicos/química , Emulsões/química , Tretinoína/química , Antineoplásicos/administração & dosagem , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Emulsões/administração & dosagem , Desenho de Equipamento , Infusões Parenterais , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Tamanho da Partícula , Tretinoína/administração & dosagem
10.
Pharmaceutics ; 11(1)2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669539

RESUMO

Thorough studies of previous analytical stress data of tetrabenazine, a dopamine depleting agent, showed a potential susceptibility to acidic conditions. Hence, the behavior of tetrabenazine acidic solutions was studied by LC-MS and NMR spectroscopy. Reverse-phase LC-MS analysis of tetrabenazine acidic aqueous solutions consistently showed a main lipophilic impurity in a proportion of 15 to 20%. NMR spectroscopy studies did not allow to completely ascertain its structure. However, we hypothesize an interconversion of trans-tetrabenazine with its unstable cis isomer via an open isoquinolinium intermediate. Evaluation of tetrabenazine integrity in orodispersible films was reassessed in light of these observations after formulation and during stability study. Even if interconversion of trans-tetrabenazine with its cis isomer was observed in orodispersible films containing tetrabenazine, this phenomenon seems not to have any consequences for the overall tetrabenazine bioavailability.

11.
Int J Pharm ; 550(1-2): 170-179, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30118832

RESUMO

Clinical use of calcitriol (1,25-dihydroxyvitamin D3) as an anticancer agent is currently limited by the requirement of supraphysiological doses and associated hypercalcemia. Nanoencapsulation of calcitriol is a strategy to overcome these drawbacks, allowing reduced administrated doses and/or frequency, while retaining the therapeutic activity towards cancer cells. For this purpose, we investigated the impact of calcitriol encapsulation on its antiproliferative activity and optimized formulation parameters with that respect. Calcitriol-loaded polymeric nanoparticles with different polymer:oil ratios were prepared by the nanoprecipitation method. Nanoparticles had similar mean size (200 nm) and EE (85%) whereas their release profile strongly depended on formulation parameters. Antiproliferative and cytotoxic activities of formulated calcitriol were evaluated in vitro using human breast adenocarcinoma cells (MCF-7) and showed that calcitriol-induced cell growth inhibition was closely related to its release kinetics. For the most suitable formulation, a sustained cell growth inhibition was observed over 10 days compared to free form. Advantages of calcitriol encapsulation and the role of formulation parameters on its biological activity in vitro were demonstrated. Selected nanoparticle formulation is a promising calcitriol delivery system ensuring a prolonged anticancer activity that could improve its therapeutic efficiency.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Calcitriol/farmacologia , Portadores de Fármacos , Nanocápsulas , Polímeros , Antineoplásicos/uso terapêutico , Calcitriol/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Nanocápsulas/química
12.
Materials (Basel) ; 11(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518919

RESUMO

Nanoparticles are nowadays largely investigated in the field of drug delivery. Among nanoparticles, protein-based particles are of paramount importance since they are natural, biodegradable, biocompatible, and nontoxic. There are several methods to prepare proteins containing nanoparticles, but only a few studies have been dedicated to the preparation of protein- based nanoparticles. Then, the aim of this work was to report on the preparation of bovine serum albumin (BSA)-based nanoparticles using a well-defined nanoprecipitation process. Special attention has been dedicated to a systematic study in order to understand separately the effect of each operating parameter of the method (such as protein concentration, solvent/non-solvent volume ratio, non-solvent injection rate, ionic strength of the buffer solution, pH, and cross-linking) on the colloidal properties of the obtained nanoparticles. In addition, the mixing processes (batch or drop-wise) were also investigated. Using a well-defined formulation, submicron protein-based nanoparticles have been obtained. All prepared particles have been characterized in terms of size, size distribution, morphology, and electrokinetic properties. In addition, the stability of nanoparticles was investigated using Ultraviolet (UV) scan and electrophoresis, and the optimal conditions for preparing BSA nanoparticles by the nanoprecipitation method were concluded.

13.
Int J Pharm ; 541(1-2): 117-135, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29476783

RESUMO

Peptides are therapeutic molecules that can treat selectively and efficiently a wide range of pathologies. However, their intrinsic properties cause their rapid degradation in the human gastrointestinal (GI) tract resulting in poor bioavailability after oral administration. Yet, their encapsulation in nanocarriers offers them protection from this harsh environment and increases their permeability across the epithelium border. In particular, Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) have proven to improve peptide oral bioavailability. This article details different techniques used to produce SLN and NLC with potential or effective peptide encapsulation. Basic principles of covalent and non-covalent lipidization are described and discussed as a prerequisite to improve hydrophilic peptide encapsulation in lipid-based nanosuspensions. The last part of this review provides the key evaluation techniques to assay SLN and NLC for peptide oral bioavailability enhancement. Methods to assess the protective effects of the carriers are described as well as the techniques to evaluate peptide release upon lipid digestion by lipases. Furthermore, this review suggests different techniques to measure permeability improvements and describes the main in vitro cell models associated.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Peptídeos/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Emulsões , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/farmacocinética , Permeabilidade , Suspensões
14.
Pharmaceutics ; 10(1)2018 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342879

RESUMO

The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

15.
Int J Pharm ; 532(1): 623-634, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28870768

RESUMO

This unique work is targeted to achieve three main goals: i) to enhance the aqueous solubility of three specifically selected hydrophobic active agents, ii) to prepare such polymeric biodegradable microparticles which can encapsulate actives-cyclodextrin complexes and iii) to functionalize a polyamide base textile with active loaded microparticles and active-cyclodextrin loaded microparticles. To achieve this objective, biodegradable cationic microparticles were prepared via double emulsion solvent evaporation process and were loaded with hydroxypropyl-beta-cyclodextrin based complexes of Indomethacin, α-tocopheroland Lauryl Isoquinolinium Bromide during the formulation process. Inclusion complex based particles were evaluated for their morphology, size distribution, zeta potential, skin penetration aptitude and adsorption onto a selected textile. It was observed that active-cyclodextrin complex encapsulation do not affect the morphology, size and zeta potential of the microparticles as well as adsorption of the microparticles onto textile remains unaltered. However such active-cyclodextrin complex encapsulated particles provided the enhancement in the aqueous solubility of hydrophobic agents and also provided prolonged release formulations.


Assuntos
Sistemas de Liberação de Medicamentos , Absorção Cutânea , Têxteis , 2-Hidroxipropil-beta-Ciclodextrina , Química Farmacêutica , Preparações de Ação Retardada , Humanos , Tamanho da Partícula , Solubilidade , beta-Ciclodextrinas
16.
Int J Pharm ; 532(1): 66-81, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28801107

RESUMO

Drugs encapsulation is a suitable strategy in order to cope with the limitations of conventional dosage forms such as unsuitable bioavailability, stability, taste, and odor. Nanoprecipitation technique has been used in the pharmaceutical and agricultural research as clean alternative for other drug carrier formulations. This technique is based on precipitation mechanism. Polymer precipitation occurs after the addition of a non-solvent to a polymer solution in four steps mechanism: supersaturation, nucleation, growth by condensation, and growth by coagulation that leads to the formation of polymer nanoparticles or aggregates. The scale-up of laboratory-based nanoprecipitation method shows a good reproducibility. In addition, flash nanoprecipitation is a good strategy for industrial scale production of nanoparticles. Nanoprecipitation is usually used for encapsulation of hydrophobic or hydrophilic compounds. Nanoprecipitation was also shown to be a good alternative for the encapsulation of natural compounds. As a whole, process and formulation related parameters in nanoprecipitation technique have critical effect on nanoparticles characteristics. Biodegradable or non-biodegradable polymers have been used for the preparation of nanoparticles intended to in vivo studies. Literature studies have demonstrated the biodistribution of the active loaded nanoparticles in different organs after administration via various routes. In general, in vitro drug release from nanoparticles prepared by nanoprecipitation includes two phases: a first phase of "burst release" which is followed by a second phase of prolonged release. Moreover, many encapsulated active molecules have been commercialized in the pharmaceutical market.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Nanopartículas/química , Animais , Precipitação Química , Liberação Controlada de Fármacos , Humanos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
17.
Pharm Res ; 34(9): 1773-1783, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28527126

RESUMO

PURPOSE: This work focused on the preparation of polycaprolactone based nanoparticles containing indomethacin to provide topical analgesic and anti-inflammatory effect for symptomatic treatment of inflammatory diseases. Indomethacin loaded nanoparticles are prepared for topical application to decrease indomethacin side effects and administration frequency. Oppositely to already reported works, in this research non-invasive method has been used for the enhancement of indomethacin dermal drug penetration. Ex-vivo skin penetration study was carried out on fresh human skin. METHODS: Nanoprecipitation was used to prepare nanoparticles. Nanoparticles were characterized using numerous techniques; dynamic light scattering, SEM, TEM, DSC and FTIR. Regarding ex-vivo skin penetration of nanoparticles, confocal laser scanning microscopy has been used. RESULTS: The results showed that NPs hydrodynamic size was between 220 to 245 nm and the zeta potential value ranges from -19 to -13 mV at pH 5 and 1 mM NaCl. The encapsulation efficiency was around 70% and the drug loading was about 14 to 17%. SEM and TEM images confirmed that the obtained nanoparticles were spherical with smooth surface. The prepared nanoparticles dispersions were stable for a period of 30 days under three temperatures of 4°C, 25°C and 40°C. In addition, CLSM images proved that obtained NPs can penetrate the skin as well. CONCLUSION: The prepared nanoparticles are submicron in nature, with good colloidal stability and penetrate the stratum corneum layer of the skin. This formulation potentiates IND skin penetration and as a promising strategy would be able to decline the side effects of IND.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Portadores de Fármacos/química , Indometacina/administração & dosagem , Nanopartículas/química , Poliésteres/química , Absorção Cutânea , Administração Cutânea , Anti-Inflamatórios não Esteroides/farmacocinética , Humanos , Indometacina/farmacocinética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pele/metabolismo
18.
J Anal Methods Chem ; 2017: 9086467, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29348967

RESUMO

The interest on plants has been focalized due to their biological activities. Extracts or fractions from plants in biodegradable polymeric nanoparticles (NP) provide many advantages on application studies. The encapsulation of the extract or fraction in NP is determined for the establishment of the test dose. HPLC method is an alternative to calculate this parameter. An analytical method based on HPLC for quantification of a hexane fraction from L. frutescens was developed and validated according to ICH. Different concentrations of the hexane fraction from leaves (HFL) were prepared (100-600 µg/mL). Linearity, limit of detection, limit of quantification, and intra- and interday precision parameters were determined. HFL was encapsulated by nanoprecipitation technique and analyzed by HPLC for quantitative aspect. The method was linear and precise for the quantification of the HFL components. NP size was 190 nm with homogeneous size distribution. Through validation method, it was determined that the encapsulation of components (1), (2), (3), and (4) was 44, 74, 86, and 97%, respectively. A simple, repeatable, and reproducible methodology was developed for the propose of quantifying the components of a vegetable material loaded in NP, using as a model the hexane fraction of L. frutescens leaves.

19.
Int J Pharm ; 518(1-2): 242-252, 2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28007543

RESUMO

In this work, the formation and stability of amorphous solid dispersions (SDs) as orodispersible films (ODF) were investigated using tetrabenazine (TBZ) as a poorly water soluble drug. The influence of polymer nature and pH-modifier incorporation to form and maintain SDs was investigated. TBZ-loaded ODF were formulated using 4 different polymers (HPMC, PVP, Pullulan, and HEC). Binary systems (BS) were obtained mixing the drug with different polymers, while ternary (TS) systems were also obtained by adding citric acid to solubilize TBZ in the mixture. Drug dissolution studies, thermal analysis and X-ray diffraction were carried out to characterize the physical state of API in ODF. ODF made of TS allowed a major improvement of TBZ dissolution profile in buccal conditions compared to a pure drug or BS. DSC and X-ray diffraction revealed that API was in amorphous state in TS while remained crystalline in BS. Following 6 months of storage, TBZ recrystallization occurred for PVP-TS and HEC-TS which induced a decrease of drug release in saliva conditions. HPMC and PUL-TS maintained API in amorphous state during 6 months. Briefly, amorphous SDs were obtained by the pre-dissolution of the drug in acidified water and incorporation in polymeric films. The miscibility and potential interaction between TBZ and polymers have been identified as important factor to explain stability differences.


Assuntos
Sistemas de Liberação de Medicamentos , Tetrabenazina/química , Varredura Diferencial de Calorimetria , Ácido Cítrico/química , Estabilidade de Medicamentos , Glicerol/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Polímeros/química , Solubilidade , Sorbitol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição , Difração de Raios X
20.
J Pharm Pharmacol ; 69(5): 582-592, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27671542

RESUMO

OBJECTIVES: Orodispersible films (ODF) were formulated to facilitate tetrabenazine (TBZ) administration to paediatric population for the treatment of hyperkinetic movement disorders. METHODS: ODF were obtained by solvent casting/evaporation method using four different polymers (HPMC, PVP, pullulan and HEC). Physicochemical, mechanical and biopharmaceutical characterizations as well as API state in ODF by thermal analysis were investigated to define and compare formulations. ODF stability was also monitored during 6 months to follow evolution of properties. KEY FINDINGS: Analyses at T0 showed few differences between formulations: results of physicochemical and mechanical characterizations were almost similar for each formulation and TBZ appeared at the amorphous state in all cases. ODF delivery system allowed a major improvement of TBZ dissolution profile in buccal conditions compared with pure drug. However, after 3 and 6 months of stability, a TBZ recrystallization occurred for formulations based on PVP and HEC associated with a decrease of drug release in saliva conditions. CONCLUSIONS: HPMC-ODF (F1) appeared as the best formulation. Indeed, physicochemical, mechanical and biopharmaceutical characteristic remained intact. In addition, TBZ remained in amorphous state during stability study.


Assuntos
Tetrabenazina/química , Administração Bucal , Administração Oral , Química Farmacêutica/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Hipercinese/tratamento farmacológico , Absorção pela Mucosa Oral , Polímeros/química , Saliva/metabolismo , Solubilidade , Solventes/química , Tetrabenazina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...