Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38915291

RESUMO

The cockroach allergen Bla g 1 encloses an exceptionally large hydrophobic cavity, which allows it to bind and deliver unsaturated fatty acid ligands. Bla g 1-mediated delivery of naturally occurring (nMix) ligands has been shown to destabilize lipid membranes, contributing to its digestive/antiviral functions within the source organism. However, the consequences of this activity on Bla g 1 allergenicity following human exposure remain unknown. In this work, we show that Bla g 1-mediated membrane disruption can induce a proinflammatory immune response in mammalian cells via two complementary pathways. At high concentrations, the cytotoxic activity of Bla g 1 induces the release of proinflammatory cytosolic contents including damage-associated molecular patterns (DAMPs) such as heat-shock Protein-70 (HSP70) and the cytokine interleukin-1 (IL-1ß). Sublytic concentrations of Bla g 1 enhanced the ability of phospholipase A2 (PLA2) to extract and hydrolyze phospholipid substrates from cellular membranes, stimulating the production of free polyunsaturated fatty acids (PUFAs) and various downstream inflammatory lipid mediators. Both of these effects are dependent on the presence of Bla g 1's natural fatty-acid (nMix) ligands with CC50 values corresponding to the concentrations required for membrane destabilization reported in previous studies. Taken together, these results suggest that mechanisms through which Bla g 1-mediated lipid delivery and membrane destabilization could directly contribute to cockroach allergic sensitization.

2.
Res Sq ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38883724

RESUMO

The severity of allergic asthma is driven by the balance between allergen-specific T regulatory (Treg) and T helper (Th)2 cells. However, it is unclear whether specific subsets of conventional dendritic cells (cDCs) promote the differentiation of these two T cell lineaeges. We have identified a subset of lung resident type 2 cDCs (cDC2s) that display high levels of CD301b and have potent Treg-inducing activity ex vivo. Single cell RNA sequencing and adoptive transfer experiments show that during allergic sensitization, many CD301b+ cDC2s transition in a stepwise manner to CD200+ cDC2s that selectively promote Th2 differentiation. GM-CSF augments the development and maintenance of CD301b+ cDC2s in vivo, and also selectively expands Treg-inducing CD301b+ cDC2s derived from bone marrow. Upon their adoptive transfer to recipient mice, lung-derived CD301b+ cDC2s confer immunological tolerance to inhaled allergens. Thus, GM-CSF maintains lung homeostasis by increasing numbers of Treg-inducing CD301b+ cDC2s.

3.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746431

RESUMO

T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection. Flot2-null CD4 + T cells exhibited increased T helper 1 polarization, proliferation, Nur77 induction, and phosphorylation of ZAP70 and LCK upon weak TCR stimulation, indicating a sensitized TCR-triggering threshold. Single cell-RNA sequencing suggested that Flot2 - null CD4 + T cells follow a similar route of activation as wild-type CD4 + T cells but exhibit higher occupancy of a discrete activation state under weak TCR stimulation. Given prior reports that TCR clustering influences sensitivity of T cells to stimuli, we evaluated TCR distribution with super-resolution microscopy. Flot2 ablation increased the number of surface TCR nanoclusters on naïve CD4 + T cells. Collectively, we posit that Flot2 modulates T cell functionality to weak TCR stimulation, at least in part, by regulating surface TCR clustering. Our findings have implications for improving T cell reactivity in diseases with poor antigenicity, such as cancer and chronic infections.

4.
Am J Respir Cell Mol Biol ; 70(6): 493-506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38386777

RESUMO

Lung inflammation, caused by acute exposure to ozone (O3), one of the six criteria air pollutants, is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung, and their number increases after O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. In this study, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage-tracing experiments showed that 12, 24, and 72 hours after exposure to O3 (2 ppm) for 3 hours, all AMØs were of tissue-resident origin. Similarly, in humans exposed to filtered air and O3 (200 ppb) for 135 minutes, we did not observe at ∼21 hours postexposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØs demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK (MER proto-oncogene, tyrosine kinase), a key receptor involved in efferocytosis, also resulted in impaired clearance of apoptotic neutrophils after O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.


Assuntos
Macrófagos Alveolares , Ozônio , Fagocitose , Proto-Oncogene Mas , c-Mer Tirosina Quinase , Ozônio/farmacologia , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Humanos , Fagocitose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/patologia , Camundongos Knockout , Masculino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente , Apoptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Eferocitose
7.
J Immunol ; 211(10): 1561-1577, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756544

RESUMO

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.


Assuntos
Aterosclerose , Hipercolesterolemia , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Glicólise , Aterosclerose/metabolismo , Colesterol/metabolismo , Antioxidantes/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
8.
Am J Respir Cell Mol Biol ; 69(6): 638-648, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578898

RESUMO

Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-Hydroxycholesterol (25HC), a product of the activity of cholesterol-25-hydroxylase (CH25H) on cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, 25HC can also amplify inflammation and be converted by CYP7B1 (cytochrome P450 family 7 subfamily B member 1) to 7α,25-dihydroxycholesterol, a lipid with chemoattractant activity, via the G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2)/GPR183 (G protein-coupled receptor 183). Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that although 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 (angiotensin-converting enzyme 2) mouse model in vivo. Treatment with 25HC also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma proinflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points but no change in weight loss. Consistent with these findings, although Ch25h and 25HC were upregulated in the lungs of SARS-CoV-2-infected wild-type mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the ß variant were similar to those in control animals. Taken together, endogenous 25HCs do not significantly regulate early SARS-CoV-2 replication or pathogenesis, and supplemental 25HC may have proinjury rather than therapeutic effects in SARS-CoV-2 pneumonia.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Humanos , Animais , Camundongos , SARS-CoV-2 , Herpesvirus Humano 4 , Hidroxicolesteróis/farmacologia , Colesterol , Receptores Acoplados a Proteínas G , Antivirais/farmacologia , Citocinas , Redução de Peso
9.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581941

RESUMO

DNASE1L3, an enzyme highly expressed in DCs, is functionally important for regulating autoimmune responses to self-DNA and chromatin. Deficiency of DNASE1L3 leads to development of autoimmune diseases in both humans and mice. However, despite the well-established causal relationship between DNASE1L3 and immunity, little is known about the involvement of DNASE1L3 in regulation of antitumor immunity, the foundation of modern antitumor immunotherapy. In this study, we identify DNASE1L3 as a potentially new regulator of antitumor immunity and a tumor suppressor in colon cancer. In humans, DNASE1L3 is downregulated in tumor-infiltrating DCs, and this downregulation is associated with poor patient prognosis and reduced tumor immune cell infiltration in many cancer types. In mice, Dnase1l3 deficiency in the tumor microenvironment enhances tumor formation and growth in several colon cancer models. Notably, the increased tumor formation and growth in Dnase1l3-deficient mice are associated with impaired antitumor immunity, as evidenced by a substantial reduction of cytotoxic T cells and a unique subset of DCs. Consistently, Dnase1l3-deficient DCs directly modulate cytotoxic T cells in vitro. To our knowledge, our study unveils a previously unknown link between DNASE1L3 and antitumor immunity and further suggests that restoration of DNASE1L3 activity may represent a potential therapeutic approach for anticancer therapy.


Assuntos
Neoplasias do Colo , Humanos , Camundongos , Animais , Neoplasias do Colo/metabolismo , Cromatina/metabolismo , Imunoterapia , Linfócitos T Citotóxicos , Microambiente Tumoral , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo
10.
Sci Rep ; 13(1): 12911, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558924

RESUMO

Immunity-related GTPase family M (IRGM), located on human chromosome 5q33.1, encodes a protein that promotes autophagy and suppresses the innate immune response. The minor allele of rs13361189 (-4299T>C), a single nucleotide polymorphism in the IRGM promoter, has been associated with several diseases, including Crohn's disease and tuberculosis. Although patterns of linkage disequilibrium and minor allele frequency for this polymorphism differ dramatically between subjects of European and African descent, studies of rs13361189 have predominantly been conducted in Europeans and the mechanism of association is poorly understood. We recruited a cohort of 68 individuals (30 White, 34 African American, 4 other race) with varying rs13361189 genotypes and assessed a panel of immune response measures including whole blood cytokine induction following ex vivo stimulation with Toll-like Receptor ligands. Minor allele carriers were found to have increased serum immunoglobulin M, C-reactive protein, and circulating CD8+ T cells. No differences in whole blood cytokines were observed between minor allele carriers and non-carriers in the overall study population; however, minor allele status was associated with increased induction of a subset of cytokines among African American subjects, and decreased induction among White subjects. These findings underline the importance of broad racial inclusion in genetic studies of immunity.


Assuntos
Citocinas , Predisposição Genética para Doença , Humanos , Alelos , Citocinas/genética , Linfócitos T CD8-Positivos , Estudos de Casos e Controles , Proteínas de Ligação ao GTP/genética , Polimorfismo de Nucleotídeo Único
11.
Am J Respir Cell Mol Biol ; 69(6): 623-637, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37523502

RESUMO

Single-cell RNA sequencing (scRNA-seq) of BAL cells has provided insights into coronavirus disease (COVID-19). However, reports have been limited by small patient cohorts. We performed a meta-analysis of BAL scRNA-seq data from healthy control subjects (n = 13) and patients with COVID-19 (n = 20), sourced from six independent studies (167,280 high-quality cells in total). Consistent with the source reports, increases in infiltrating leukocyte subtypes were noted, several with type I IFN signatures and unique gene expression signatures associated with transcellular chemokine signaling. Noting dramatic reductions of inferred NKX2-1 and NR4A1 activity in alveolar epithelial type II (AT-II) cells, we modeled pseudotemporal AT-II-to-AT-I progression. This revealed changes in inferred AT-II cell metabolic activity, increased transitional cells, and a previously undescribed AT-I state. This cell state was conspicuously marked by the induction of genes of the epidermal differentiation complex, including the cornified envelope protein SPRR3 (small proline-rich protein 3), upregulation of multiple KRT (keratin) genes, inferred mitochondrial dysfunction, and cell death signatures including apoptosis and ferroptosis. Immunohistochemistry of lungs from patients with COVID-19 confirmed upregulation and colocalization of KRT13 and SPRR3 in the distal airspaces. Forced overexpression of SPRR3 in human alveolar epithelial cells ex vivo did not activate caspase-3 or upregulate KRT13, suggesting that SPRR3 marks an AT-I cornification program in COVID-19 but is not sufficient for phenotypic changes.


Assuntos
Células Epiteliais Alveolares , COVID-19 , Humanos , COVID-19/genética , COVID-19/metabolismo , Pulmão , Células Epiteliais/metabolismo , Análise de Sequência de RNA
12.
Front Genet ; 14: 1173676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415598

RESUMO

Introduction: Asthma is a chronic disease of the airways that impairs normal breathing. The etiology of asthma is complex and involves multiple factors, including the environment and genetics, especially the distinct genetic architecture associated with ancestry. Compared to early-onset asthma, little is known about genetic predisposition to late-onset asthma. We investigated the race/ethnicity-specific relationship among genetic variants within the major histocompatibility complex (MHC) region and late-onset asthma in a North Carolina-based multiracial cohort of adults. Methods: We stratified all analyses by self-reported race (i.e., White and Black) and adjusted all regression models for age, sex, and ancestry. We conducted association tests within the MHC region and performed fine-mapping analyses conditioned on the race/ethnicity-specific lead variant using whole-genome sequencing (WGS) data. We applied computational methods to infer human leukocyte antigen (HLA) alleles and residues at amino acid positions. We replicated findings in the UK Biobank. Results: The lead signals, rs9265901 on the 5' end of HLA-B, rs55888430 on HLA-DOB, and rs117953947 on HCG17, were significantly associated with late-onset asthma in all, White, and Black participants, respectively (OR = 1.73, 95%CI: 1.31 to 2.14, p = 3.62 × 10-5; OR = 3.05, 95%CI: 1.86 to 4.98, p = 8.85 × 10-6; OR = 19.5, 95%CI: 4.37 to 87.2, p = 9.97 × 10-5, respectively). For the HLA analysis, HLA-B*40:02 and HLA-DRB1*04:05, HLA-B*40:02, HLA-C*04:01, and HLA-DRB1*04:05, and HLA-DRB1*03:01 and HLA-DQB1 were significantly associated with late-onset asthma in all, White, and Black participants. Conclusion: Multiple genetic variants within the MHC region were significantly associated with late-onset asthma, and the associations were significantly different by race/ethnicity group.

13.
Cell Stem Cell ; 30(6): 745-747, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267910

RESUMO

Proliferative cells require excess cholesterol to support rapid membrane biogenesis. Using a mutant KRAS mouse model of non-small cell lung cancer, Guilbaud et al. show that lung cancers accumulate cholesterol by locally and distally reprogramming lipid trafficking and that cholesterol-removing interventions may hold promise as a therapeutic strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Colecionismo , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Modelos Animais de Doenças , Colesterol
14.
Sci Rep ; 13(1): 7073, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127649

RESUMO

Cranial neural crest cells (cNCC) are a multipotent embryonic cell population that give rise to a diverse set of cell types. These cells are particularly vulnerable to external metabolic stressors, as exemplified by the association between maternal hyperglycemia and congenital malformations. We were interested in studying the effect of various concentrations of glucose and pyruvate on cNCC metabolism, migration, and differentiation using an established murine neural crest cell model (O9-1). We unexpectedly observed a pattern of gene expression suggestive of cholesterol biosynthesis induction under glucose depletion conditions in O9-1 cells. We further showed that treatment with two different cholesterol synthesis inhibitors interfered with cell migration and differentiation, inhibiting chondrogenesis while enhancing smooth muscle cell differentiation. As congenital arhinia (absent external nose), a malformation caused by mutations in SMCHD1, appears to represent, in part, a defect in cNCC, we were also interested in investigating the effects of glucose and cholesterol availability on Smchd1 expression in O9-1 cells. Smchd1 expression was induced under high glucose conditions whereas cholesterol synthesis inhibitors decreased Smchd1 expression during chondrogenesis. These data highlight a novel role for cholesterol biosynthesis in cNCC physiology and demonstrate that human phenotypic variability in SMCHD1 mutation carriers may be related, in part, to SMCHD1's sensitivity to glucose or cholesterol dosage during development.


Assuntos
Glucose , Crista Neural , Camundongos , Animais , Humanos , Diferenciação Celular , Glucose/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
15.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821369

RESUMO

Cholesterol-25-hydroxylase (CH25H), the biosynthetic enzyme for 25-hydroxycholesterol (25HC), is most highly expressed in the lung, but its role in lung biology is poorly defined. Recently, we reported that Ch25h is induced in monocyte-derived macrophages recruited to the airspace during resolution of lung inflammation and that 25HC promotes liver X receptor-dependent (LXR-dependent) clearance of apoptotic neutrophils by these cells. Ch25h and 25HC are, however, also robustly induced by lung-resident cells during the early hours of lung inflammation, suggesting additional cellular sources and targets. Here, using Ch25h-/- mice and exogenous 25HC in lung injury models, we provide evidence that 25HC sustains proinflammatory cytokines in the airspace and augments lung injury, at least in part, by inducing LXR-independent endoplasmic reticulum stress and endothelial leak. Suggesting an autocrine effect in endothelium, inhaled LPS upregulates pulmonary endothelial Ch25h, and non-hematopoietic Ch25h deletion is sufficient to confer lung protection. In patients with acute respiratory distress syndrome, airspace 25HC and alveolar macrophage CH25H were associated with markers of microvascular leak, endothelial activation, endoplasmic reticulum stress, inflammation, and clinical severity. Taken together, our findings suggest that 25HC deriving from and acting on different cell types in the lung communicates distinct, temporal LXR-independent and -dependent signals to regulate inflammatory homeostasis.


Assuntos
Lesão Pulmonar Aguda , Hidroxicolesteróis , Animais , Camundongos , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Macrófagos Alveolares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente
16.
PLoS One ; 18(1): e0280387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36638125

RESUMO

Despite the prominent use of complex survey data and the growing popularity of machine learning methods in epidemiologic research, few machine learning software implementations offer options for handling complex samples. A major challenge impeding the broader incorporation of machine learning into epidemiologic research is incomplete guidance for analyzing complex survey data, including the importance of sampling weights for valid prediction in target populations. Using data from 15, 820 participants in the 1988-1994 National Health and Nutrition Examination Survey cohort, we determined whether ignoring weights in gradient boosting models of all-cause mortality affected prediction, as measured by the F1 score and corresponding 95% confidence intervals. In simulations, we additionally assessed the impact of sample size, weight variability, predictor strength, and model dimensionality. In the National Health and Nutrition Examination Survey data, unweighted model performance was inflated compared to the weighted model (F1 score 81.9% [95% confidence interval: 81.2%, 82.7%] vs 77.4% [95% confidence interval: 76.1%, 78.6%]). However, the error was mitigated if the F1 score was subsequently recalculated with observed outcomes from the weighted dataset (F1: 77.0%; 95% confidence interval: 75.7%, 78.4%). In simulations, this finding held in the largest sample size (N = 10,000) under all analytic conditions assessed. For sample sizes <5,000, sampling weights had little impact in simulations that more closely resembled a simple random sample (low weight variability) or in models with strong predictors, but findings were inconsistent under other analytic scenarios. Failing to account for sampling weights in gradient boosting models may limit generalizability for data from complex surveys, dependent on sample size and other analytic properties. In the absence of software for configuring weighted algorithms, post-hoc re-calculations of unweighted model performance using weighted observed outcomes may more accurately reflect model prediction in target populations than ignoring weights entirely.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Inquéritos Nutricionais , Inquéritos e Questionários , Software
17.
Artigo em Inglês | MEDLINE | ID: mdl-36706677

RESUMO

Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.


Assuntos
Proibitinas , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo , Ácidos Graxos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Macrófagos , Citocinas/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Quimiocinas/metabolismo
18.
Crit Care Med ; 51(1): e13-e18, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519995

RESUMO

OBJECTIVES: We sought to determine whether hyperinflammatory acute respiratory distress syndrome (ARDS) and hypoinflammatory ARDS, which have been associated with differences in plasma biomarkers and mortality risk, also display differences in bronchoalveolar lavage (BALF) biomarker profiles. We then described the relationship between hyperinflammatory ARDS and hypoinflammatory ARDS to novel subphenotypes derived using BALF biomarkers. DESIGN: Secondary analysis of a randomized control trial testing omega-3 fatty acids for the treatment of ARDS. SETTING: Five North American intensive care units. PATIENTS: Adults (n = 88) on invasive mechanical ventilation within 48 hours of ARDS onset. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We classified 57 patients as hypoinflammatory and 31 patients as hyperinflammatory using a previously validated logistic regression model. Of 14 BALF biomarkers analyzed, interleukin-6 and granulocyte colony stimulating factor were higher among patients with hyperinflammatory ARDS compared with hypoinflammatory ARDS, though the differences were not robust to multiple hypothesis testing. We then performed a de novo latent class analysis of the 14 BALF biomarkers to identify two classes well separated by alveolar profiles. Class 2 (n = 63) displayed significantly higher interleukin-6, von Willebrand factor, soluble programmed cell death receptor-1, % neutrophils, and other biomarkers of inflammation compared with class 1 (n = 25). These BALF-derived classes had minimal overlap with the plasma-derived hyperinflammatory and hypoinflammatory classes, and the majority of both plasma-derived classes were in BALF-derived class 2 and characterized by high BALF biomarkers. Additionally, the BALF-derived classes were associated with clinical severity of pulmonary disease, with class 2 exhibiting lower Pao2 to Fio2 and distinct ventilatory parameters, unlike the plasma-derived classes, which were only related to nonpulmonary organ dysfunction. CONCLUSIONS: Hyperinflammatory and hypoinflammatory ARDS subphenotypes did not display significant differences in alveolar biologic profiles. Identifying ARDS subgroups using BALF measurements is a unique approach that complements information obtained from plasma, with potential to inform enrichment strategies in trials of lung-targeted therapies.


Assuntos
Interleucina-6 , Síndrome do Desconforto Respiratório , Adulto , Humanos , Síndrome do Desconforto Respiratório/terapia , Biomarcadores , Líquido da Lavagem Broncoalveolar , Neutrófilos
19.
Environ Int ; 171: 107687, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527873

RESUMO

BACKGROUND: Concentrated animal feeding operations (CAFOs) are a source of environmental pollution and have been associated with a variety of health outcomes. Immune-mediated diseases (IMD) are characterized by dysregulation of the normal immune response and, while they may be affected by gene and environmental factors, their association with living in proximity to a CAFO is unknown. OBJECTIVES: We explored gene, environment, and gene-environment (GxE) relationships between IMD, CAFOs, and single nucleotide polymorphisms (SNPs) of prototypical xenobiotic response genes AHR, ARNT, and AHRR and prototypical immune response gene PTPN22. METHODS: The exposure analysis cohort consisted of 6,464 participants who completed the Personalized Environment and Genes Study Health and Exposure Survey and a subset of 1,541 participants who were genotyped. We assessed the association between participants' residential proximity to a CAFO in gene, environment, and GxE models. We recombined individual associations in a transethnic model using METAL meta-analysis. RESULTS: In White participants, ARNT SNP rs11204735 was associated with autoimmune diseases and rheumatoid arthritis (RA), and ARNT SNP rs1889740 was associated with RA. In a transethnic genetic analysis, ARNT SNPs rs11204735 and rs1889740 and PTPN22 SNP rs2476601 were associated with autoimmune diseases and RA. In participants living closer than one mile to a CAFO, the log-distance to a CAFO was associated with autoimmune diseases and RA. In a GxE interaction model, White participants with ARNT SNPs rs11204735 and rs1889740 living closer than eight miles to a CAFO had increased odds of RA and autoimmune diseases, respectively. The transethnic model revealed similar GxE interactions. CONCLUSIONS: Our results suggest increased risk of autoimmune diseases and RA in those living in proximity to a CAFO and a potential role of the AHR-ARNT pathway in conferring risk. We also report the first association of ARNT SNPs rs11204735 and rs1889740 with RA. Our findings, if confirmed, could allow for novel genetically-targeted or other preventive approaches for certain IMD.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Animais , Suínos , Doenças Autoimunes/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
20.
bioRxiv ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36263064

RESUMO

Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-hydroxycholesterol (25HC), a product of activity of cholesterol-25-hydroxylase (CH25H) upon cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against SARS-CoV-2. However, 25HC can also amplify inflammation and tissue injury and be converted by CYP7B1 to 7α,25HC, a lipid with chemoattractant activity via the G protein-coupled receptor, EBI2/GPR183. Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that while 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 mouse model in vivo. 25HC treatment also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma pro-inflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points, but no change in weight loss. Consistent with these findings, although Ch25h was upregulated in the lungs of SARS-CoV-2-infected WT mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the beta variant were similar to control animals. Taken together, endogenous 25-hydroxycholesterols do not significantly regulate early SARS-CoV-2 replication or pathogenesis and supplemental 25HC may have pro-injury rather than therapeutic effects in SARS-CoV-2 pneumonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...