Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Am Heart J Plus ; 42: 100398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813581
2.
Am J Med ; 135(9): 1059-1068, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35472396

RESUMO

Microvascular dysfunction describes a varied set of conditions that includes vessel destruction, abnormal vasoreactivity, in situ thrombosis, and fibrosis, which ultimately results in tissue damage and progressive organ failure. Microvascular dysfunction has a wide array of clinical presentations, ranging from ischemic heart disease to renal failure, stroke, blindness, pulmonary arterial hypertension, and dementia. An intriguing unifying hypothesis suggests that microvascular dysfunction of specific organs is an expression of a systemic illness that worsens with age and is accelerated by vascular risk factors. Studying relationships across a spectrum of microvascular diseases affecting the brain, retina, kidney, lung, and heart may uncover shared pathologic mechanisms that could inform novel treatment strategies. We review the evidence that supports the notion that microvascular dysfunction represents a global pathologic process. Our focus is on studies reporting concomitant microvascular dysfunction of the heart with that of the brain, kidney, retina, and lung.


Assuntos
Rim , Trombose , Encéfalo , Humanos , Rim/irrigação sanguínea , Pulmão , Fatores de Risco
3.
Am Heart J Plus ; 22: 100215, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38558907

RESUMO

The coronary microvasculature is responsible for providing oxygen and nutrients to myocardial tissue. A healthy microvasculature with an intact and properly functioning endothelium accomplishes this by seemless changes in vascular tone to match supply and demand. Perturbations in the normal physiology of the microvasculature, including endothelial and/or vascular smooth muscle dysfunction, result in impaired function (vasoconstriction, antithrombotic, etc.) and structural (hypertrophic, fibrotic) abnormalities that lead to microvascular ischemia and potential organ damage. While coronary microvascular dysfunction (CMD) is the primary pathologic driving force in ischemia with non-obstructive coronary artery disease (INOCA), angina with no obstructive coronary arteries (ANOCA), and myocardial infarction with non-obstructed coronary arteries (MINOCA), it may be a bystander in many cardiac disorders which later become pathologically associated with signs and/or symptoms of myocardial ischemia. Importantly, regardless of the primary or secondary basis of CMD in the heart, it is associated with important increases in morbidity and mortality. In this review we discuss salient features pertaining to known pathophysiologic mechanisms driving CMD, the spectrum of heart diseases where it places a critical role, invasive and non-invasive diagnostic testing, management strategies, and the gaps in knowledge where future research efforts are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...