Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 33(2): 418-426, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104102

RESUMO

With three clinically approved antibody-drug conjugates targeting HER2, this target is clearly identified to be of interest in oncology. Moreover, the advent of new bioconjugation technologies producing site-specific homogenous conjugates led to the opportunity of developing new medicines linking antibodies and payloads. Here, a new relevant HER2-targeting ADC was obtained by the conjugation of monomethyl auristatin E onto trastuzumab using McSAF Inside bioconjugation technology. The antibody-drug conjugate formed presented an average drug-to-antibody ratio of 4 with a high homogeneity and an excellent stability especially when incubated with human serum albumin or in human plasma. Moreover, it demonstrated a strong efficacy in an HER2 xenograft tumor model in mice, superior to the clinically approved antibody-drug conjugate ado-trastuzumab emtansine, with a complete tumor regression observed both macroscopically and microscopically demonstrating its therapeutic potential.


Assuntos
Neoplasias da Mama , Imunoconjugados , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Receptor ErbB-2/uso terapêutico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Bioconjug Chem ; 32(3): 595-606, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33630573

RESUMO

To overcome stability and heterogeneity issues of antibody-drug conjugates (ADCs) produced with existing bioconjugation technologies incorporating a maleimide motif, we developed McSAF Inside, a new technology based on a trifunctionalized di(bromomethyl)pyridine scaffold. Our solution allows the conjugation of a linker-payload to previously reduced interchain cysteines of a native antibody, resulting in disulfide rebridging. This leads to highly stable and homogeneous ADCs with control over the drug-to-antibody ratio (DAR) and the linker-payload position. Using our technology, we synthesized an ADC, MF-BTX-MMAE, built from anti-CD30 antibody cAC10 (brentuximab), and compared it to Adcetris, the first line treatment against CD30-positive lymphoma, in a CD30-positive lymphoma model. MF-BTX-MMAE displayed improved DAR homogeneity, with a solid batch-to-batch reproducibility, as well as enhanced stability in thermal stress conditions or in the presence of a free thiol-containing protein, such as human serum albumin (HSA). MF-BTX-MMAE showed antigen-binding, in vitro cytotoxicity, in vivo efficacy, and tolerability similar to Adcetris. Therefore, in accordance with current regulatory expectations for the development of new ADCs, McSAF Inside technology gives access to relevant ADCs with improved characteristics and stability.


Assuntos
Imunoconjugados/metabolismo , Antígeno Ki-1/imunologia , Linfoma/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Estudo de Prova de Conceito
3.
ACS Omega ; 5(3): 1557-1565, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010829

RESUMO

Antibody-drug conjugates (ADCs) are the spearhead of targeted therapies. According to the technology used, the conjugation of a cytotoxic drug to an antibody can produce suboptimal heterogeneous species, impacting the overall efficacy. Herein, we describe the synthesis of HER2-targeting ADCs with three disulfide rebridging heads, allowing homogeneous and site-specific bioconjugation: dibromomaleimide (DBM), dithiomaleimide (DTM), and hybrid thio-bromomaleimide (TBM) chemical bricks to combine the properties of both previously used heads. The primary purpose of this study was to compare the reactivity of these three chemical bricks in the bioconjugation process. Then, the resulting ADCs were evaluated in terms of physicochemical stability, binding, and biological activity. We have demonstrated that the higher percentage of a drug-to-antibody ratio of 4 was obtained with TBM. Additionally, the reaction time was drastically reduced with TBM in comparison to DTM. The three ADCs showed good binding to HER2 and in vitro cytotoxicity, which validate the TBM structure as an attractive alternative scaffold for rebridging bioconjugation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...