Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1912): 20220532, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39230447

RESUMO

Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.


Assuntos
Animais Selvagens , Animais , Comportamento Social , Modelos Biológicos , Interações Hospedeiro-Patógeno
2.
PLoS Comput Biol ; 20(1): e1011287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175850

RESUMO

Many pathogens of humans and livestock also infect wildlife that can act as a reservoir and challenge disease control or elimination. Efficient and effective prioritization of research and management actions requires an understanding of the potential for new tools to improve elimination probability with feasible deployment strategies that can be implemented at scale. Wildlife vaccination is gaining interest as a tool for managing several wildlife diseases. To evaluate the effect of vaccinating white-tailed deer (Odocoileus virginianus), in combination with harvest, in reducing and eliminating bovine tuberculosis from deer populations in Michigan, we developed a mechanistic age-structured disease transmission model for bovine tuberculosis with integrated disease management. We evaluated the impact of pulse vaccination across a range of vaccine properties. Pulse vaccination was effective for reducing disease prevalence rapidly with even low (30%) to moderate (60%) vaccine coverage of the susceptible and exposed deer population and was further improved when combined with increased harvest. The impact of increased harvest depended on the relative strength of transmission modes, i.e., direct vs indirect transmission. Vaccine coverage and efficacy were the most important vaccine properties for reducing and eliminating disease from the local population. By fitting the model to the core endemic area of bovine tuberculosis in Michigan, USA, we identified feasible integrated management strategies involving vaccination and increased harvest that reduced disease prevalence in free-ranging deer. Few scenarios led to disease elimination due to the chronic nature of bovine tuberculosis. A long-term commitment to regular vaccination campaigns, and further research on increasing vaccines efficacy and uptake rate in free-ranging deer are important for disease management.


Assuntos
Cervos , Mycobacterium bovis , Tuberculose Bovina , Vacinas , Animais , Humanos , Bovinos , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/prevenção & controle , Animais Selvagens , Vacinação/veterinária
3.
Mov Ecol ; 10(1): 2, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033211

RESUMO

BACKGROUND: Invasive reptiles pose a serious threat to global biodiversity, but early detection of individuals in an incipient population is often hindered by their cryptic nature, sporadic movements, and variation among individuals. Little is known about the mechanisms that affect the movement of these species, which limits our understanding of their dispersal. Our aim was to determine whether translocation or small-scale landscape features affect movement patterns of brown treesnakes (Boiga irregularis), a destructive invasive predator on the island of Guam. METHODS: We conducted a field experiment to compare the movements of resident (control) snakes to those of snakes translocated from forests and urban areas into new urban habitats. We developed a Bayesian hierarchical model to analyze snake movement mechanisms and account for attributes unique to invasive reptiles by incorporating multiple behavioral states and individual heterogeneity in movement parameters. RESULTS: We did not observe strong differences in mechanistic movement parameters (turning angle or step length) among experimental treatment groups. We found some evidence that translocated snakes from both forests and urban areas made longer movements than resident snakes, but variation among individuals within treatment groups weakened this effect. Snakes translocated from forests moved more frequently from pavement than those translocated from urban areas. Snakes translocated from urban areas moved less frequently from buildings than resident snakes. Resident snakes had high individual heterogeneity in movement probability. CONCLUSIONS: Our approach to modeling movement improved our understanding of invasive reptile dispersal by allowing us to examine the mechanisms that influence their movement. We also demonstrated the importance of accounting for individual heterogeneity in population-level analyses, especially when management goals involve eradication of an invasive species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA