Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998045

RESUMO

Seamounts are the least known ocean biome. Considered biodiversity hotspots, biomass oases, and refuges for megafauna, large gaps exist in their real diversity relative to other ecosystems like coral reefs. Using environmental DNA metabarcoding (eDNA) and baited video (BRUVS), we compared fish assemblages across five environments of different depths: coral reefs (15 m), shallow seamounts (50 m), continental slopes (150 m), intermediate seamounts (250 m), and deep seamounts (500 m). We modeled assemblages using 12 environmental variables and found depth to be the main driver of fish diversity and biomass, although other variables like human accessibility were important. Boosted Regression Trees (BRT) revealed a strong negative effect of depth on species richness, segregating coral reefs from deep-sea environments. Surprisingly, BRT showed a hump-shaped effect of depth on fish biomass, with significantly lower biomass on coral reefs than in shallowest deep-sea environments. Biomass of large predators like sharks was three times higher on shallow seamounts (50 m) than on coral reefs. The five studied environments showed quite distinct assemblages. However, species shared between coral reefs and deeper-sea environments were dominated by highly mobile large predators. Our results suggest that seamounts are no diversity hotspots for fish. However, we show that shallower seamounts form biomass oases and refuges for threatened megafauna, suggesting that priority should be given to their protection.

2.
Sci Rep ; 10(1): 291, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937842

RESUMO

Monitoring potentially devastating coral-eating crown-of-thorns starfish (COTS) populations at scales relevant to management is a challenging task. Here, we investigated a citizen science approach to detect COTS outbreaks and prioritize management responses. Between 2014 and 2018, 38 000 COTS were recorded through 641 online observation reports submitted across New Caledonia, Vanuatu and Fiji by private stakeholders (51%), NGOs (22%), business operator (11%), research/government agencies (16%). COTS were observed in multiple areas, including in remote/inhabited reefs where they had never been reported. A three-level classification was developed to discriminate risk areas and propose operational guidelines to streamline management actions. About two-thirds of reports had low abundances (<10 starfish sighted) and could be addressed with low priority. Verification surveys at 65 reef sites confirmed outbreaks in half of the cases, along with high peak densities (7 000 ind.ha-1). Combining professional and non-professional observers increased the detection range (+27%) and the number of COTS detections (+129%). Citizen reports were eventually followed by removal campaigns organized within diverse institutional frameworks. While citizen monitoring has intrinsic limitations, we advocate that it constitutes a complementary and promising approach to support the ongoing management efforts in all countries affected by COTS.


Assuntos
Estrelas-do-Mar/crescimento & desenvolvimento , Animais , Recifes de Corais , Nova Caledônia , Dinâmica Populacional , Estrelas-do-Mar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...