Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(2): 342-347, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37480247

RESUMO

The effects of a fluopyram seed treatment on lesion nematodes (Pratylenchus spp.) and other plant-parasitic nematodes (PPNs) were evaluated on corn in multiple field locations in 2020 and 2021. The highest rate of fluopyram seed treatment (0.15 mg seed-1) reduced early season population density of lesion nematodes compared with the base treatment control in 2020 only. However, fluopyram did not affect late season lesion nematode population density and corn yields. Fluopyram seed treatment also had minimal or nonsignificant effects on other PPN species. Based on these results, the effects of fluopyram were tested in vitro on Pratylenchus penetrans. Results demonstrated that fluopyram severely affected motility in P. penetrans. The sensitivity of P. penetrans second-stage juveniles (J2s) to fluopyram was significantly higher than at J4 and adult, suggesting that sensitivity to fluopyram is dependent on developmental stage. In addition, the effects of fluopyram were reversible at an EC50 but were irreversible at the maximum concentration (25 µg/ml). Overall, our results indicate that fluopyram has potential for controlling P. penetrans, but its efficacy is variable depending on nematode developmental stage and chemical concentration. Further research is needed to determine if these impacts can translate to field scenarios.


Assuntos
Tylenchoidea , Zea mays , Animais , Benzamidas/farmacologia , Piridinas/farmacologia
2.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100363

RESUMO

Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have 12 isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive green fluorescent protein (GFP) expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ingestão de Alimentos , Canais Iônicos/metabolismo , Mecanorreceptores/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...