Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547268

RESUMO

Estrogen activity towards cancer-related pathways can impact therapeutic intervention. Recent omics data suggest possible crosstalk between estrogens/gender and MDM4, a key regulator of p53. Since MDM4 can either promote cell transformation or enhance DNA damage-sensitivity, we analysed in vivo impact of estrogens on both MDM4 activities. In Mdm4 transgenic mouse, Mdm4 accelerates the formation of fibrosarcoma and increases tumor sensitivity to cisplatin as well, thus confirming in vivo Mdm4 dual mode of action. Noteworthy, Mdm4 enhances chemo- and radio-sensitivity in male but not in female animals, whereas its tumor-promoting activity is not affected by mouse gender. Combination therapy of transgenic females with cisplatin and fulvestrant, a selective estrogen receptor degrader, was able to recover tumor cisplatin-sensitivity, demonstrating the relevance of estrogens in the observed sexual dimorphism. Molecularly, estrogen receptor-α alters intracellular localization of MDM4 by increasing its nuclear fraction correlated to decreased cell death, in a p53-independent manner. Importantly, MDM4 nuclear localization and intra-tumor estrogen availability correlate with decreased platinum-sensitivity and apoptosis and predicts poor disease-free survival in high-grade serous ovarian carcinoma. These data demonstrate estrogen ability to modulate chemo-sensitivity of MDM4-expressing tumors and to impinge on intracellular trafficking. They support potential usefulness of combination therapy involving anti-estrogenic drugs.

2.
J Exp Clin Cancer Res ; 36(1): 73, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28577555

RESUMO

BACKGROUND: Epidemiologic data in volcanic areas suggest that environmental factors might be involved in the increase of thyroid cancer (TC) incidence. Recent reports indicate that several heavy metals and metalloids are increased in volcanic areas. This study aims to evaluate the combined effect of three of these elements Boron (B), Cadmium (Cd), and Molybdenum (Mo) - all increased in the volcanic area of Mt. Etna, in Italy - on thyroid tumorigenesis in the rat. METHODS: Female Wistar rats prone to develop thyroid tumors by low-iodine diet and methimazole treatment received ad libitum drinking water supplemented with B, Cd, and Mo at concentrations in the range found in the urine samples of residents of the volcanic area. At 5 and 10 months animals were euthanized, and their thyroid analysed. Statistical analysis was performed with a 2-way unpaired t-test. RESULTS: No toxic effect of the three elements on the growth of the animals was observed. A significant increase of histological features of transformation was observed in thyroid follicular cells of rats treated with B, Cd, and Mo compared with those of control group. These abnormalities were associated with decreased iodine content in the thyroid. CONCLUSIONS: This study provides the evidence that slightly increased environmental concentrations of B, Cd, and Mo can accelerate the appearance of transformation marks in the thyroid gland of hypothyroid rats.


Assuntos
Boro/toxicidade , Cádmio/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Molibdênio/toxicidade , Neoplasias da Glândula Tireoide/induzido quimicamente , Animais , Boro/administração & dosagem , Cádmio/administração & dosagem , Transformação Celular Neoplásica/patologia , Feminino , Molibdênio/administração & dosagem , Ratos , Ratos Wistar , Neoplasias da Glândula Tireoide/patologia
3.
Cancer Res ; 75(21): 4560-72, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26359458

RESUMO

Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Peptídeos/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células HCT116 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Estresse Oxidativo/fisiologia , Ligação Proteica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...