Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36835885

RESUMO

COVID-19 acute respiratory distress syndrome (ARDS) can be associated with extensive lung damage, pneumothorax, pneumomediastinum and, in severe cases, persistent air leaks (PALs) via bronchopleural fistulae (BPF). PALs can impede weaning from invasive ventilation or extracorporeal membrane oxygenation (ECMO). We present a series of patients requiring veno-venous ECMO for COVID-19 ARDS who underwent endobronchial valve (EBV) management of PAL. This is a single-centre retrospective observational study. Data were collated from electronic health records. Patients treated with EBV met the following criteria: ECMO for COVID-19 ARDS; the presence of BPF causing PAL; air leak refractory to conventional management preventing ECMO and ventilator weaning. Between March 2020 and March 2022, 10 out of 152 patients requiring ECMO for COVID-19 developed refractory PALs, which were successfully treated with bronchoscopic EBV placement. The mean age was 38.3 years, 60% were male, and half had no prior co-morbidities. The average duration of air leaks prior to EBV deployment was 18 days. EBV placement resulted in the immediate cessation of air leaks in all patients with no peri-procedural complications. Weaning of ECMO, successful ventilator recruitment and removal of pleural drains were subsequently possible. A total of 80% of patients survived to hospital discharge and follow-up. Two patients died from multi-organ failure unrelated to EBV use. This case series presents the feasibility of EBV placement in severe parenchymal lung disease with PAL in patients requiring ECMO for COVID-19 ARDS and its potential to expedite weaning from both ECMO and mechanical ventilation, recovery from respiratory failure and ICU/hospital discharge.

2.
Membranes (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810130

RESUMO

Extracorporeal life support (ECLS) for severe respiratory failure has seen an exponential growth in recent years. Extracorporeal membrane oxygenation (ECMO) and extracorporeal CO2 removal (ECCO2R) represent two modalities that can provide full or partial support of the native lung function, when mechanical ventilation is either unable to achieve sufficient gas exchange to meet metabolic demands, or when its intensity is considered injurious. While the use of ECMO has defined indications in clinical practice, ECCO2R remains a promising technique, whose safety and efficacy are still being investigated. Understanding the physiological principles of gas exchange during respiratory ECLS and the interactions with native gas exchange and haemodynamics are essential for the safe applications of these techniques in clinical practice. In this review, we will present the physiological basis of gas exchange in ECMO and ECCO2R, and the implications of their interaction with native lung function. We will also discuss the rationale for their use in clinical practice, their current advances, and future directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...