Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(3): 1118-1128, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30605201

RESUMO

The YCrB4 type borides YTB4 (T = Mo, W, Re) were synthesized from the elements by arc-melting and subsequent annealing. The structures were refined from single crystal X-ray diffractometer data: Pbam, a = 602.84(8), b = 1164.5(1), c = 361.20(4) pm, wR2 = 0.0404, 624 F2 values, 26 variables for YMoB4, a = 603.00(7), b = 1165.1(1), c = 360.63(6) pm, wR2 = 0.0487, 474 F2 values, 26 variables for YWB4, and a = 596.67(6), b = 1154.4(1), c = 360.21(4) pm, wR2 = 0.0465, 544 F2 values, 26 variables for YReB4. The boron atoms build up planar networks which are a tessellation of slightly distorted pentagons and heptagons. Adjacent networks coordinate the transition metal and yttrium atoms in the form of pentagonal and heptagonal prisms, respectively. The four crystallographically distinct boron sites are differentiated by high-resolution 11B solid state isotropic magnetic shifts and nuclear electric quadrupolar coupling constants. Partial site assignments are possible based on comparisons with electric field gradient calculations using the WIEN2k code. 89Y MAS NMR spectroscopic studies suggest substantially weaker Knight shift contributions to the resonance frequencies when compared to other intermetallic yttrium compounds, including other ternary yttrium boride compounds measured previously.

2.
Appl Opt ; 55(32): 9017-9021, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27857284

RESUMO

Electro-optical circuit boards should provide simple and cost-effective coupling techniques and crosstalk levels of less than -30 dB. A dicing saw was used to create waveguide grooves with a surface roughness of less than 183 nm in a 1.6-mm-thick polymethyl methacrylate polymer (PMMA) substrate. The buried optical waveguides were made from SU-8 in a PMMA substrate covered with a 1-mm PMMA sheet. The propagation loss for a 500 µm×570 µm straight waveguide was 0.9 dB/cm at 1310 nm. The coupling between parallel waveguides was measured at separation distances from 45 to 595 µm. The crosstalk was less than -40 dB for 65-mm-long waveguides. This fabrication method shows potential for dense optical interconnects with very low crosstalk.

3.
Inorg Chem ; 55(17): 9057-64, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27532875

RESUMO

The intermetallic compound EuAu3Al2 has been prepared by reaction of the elements in tantalum ampules. The structure was refined from single-crystal data, indicating that the title compound crystallizes in the orthorhombic crystal system (a = 1310.36(4), b = 547.87(1), c = 681.26(2) pm) with space group Pnma (wR2 = 0.0266, 1038 F(2) values, 35 parameters) and is isostructural to SrAu3Al2 (LT-SrZn5 type). Full ordering of the gold and aluminum atoms was observed. Theoretical calculations confirm that the title compound can be described as a polar intermetallic phase containing a polyanionic [Au3Al2](δ-) network featuring interconnected strands of edge-sharing [AlAu4] tetrahedra. Magnetic measurements and (151)Eu Mössbauer spectroscopic investigations confirmed the divalent character of the europium atoms. Ferromagnetic ordering below TC = 16.5(1) K was observed. Heat capacity measurements showed a λ-type anomaly at T = 15.7(1) K, in line with the ordering temperature from the susceptibility measurements. The magnetocaloric properties of EuAu3Al2 were determined, and a magnetic entropy of ΔSM = -4.8 J kg(-1) K(-1) for a field change of 0 to 50 kOe was determined. Band structure calculations found that the f-bands of Eu present at the Fermi level of non-spin-polarized calculations are responsible for the ferromagnetic ordering in this phase, whereas COHP chemical bonding coupled with Bader charge analysis confirmed the description of the structure as covalently bonded polyanionic [Au3Al2](δ-) network interacting ionically with Eu(δ+).

4.
Appl Opt ; 54(22): 6623-31, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368073

RESUMO

Multimode polymer waveguides have been developed to create low-cost, high-speed on-board optical interconnects. Buried optical waveguides made from SU-8 in a polymethyl methacrylate polymer (PMMA) substrate covered with a thin PMMA sheet are a low-cost option for electro-optical interconnects. The propagation losses for a 600 µm×600 µm straight waveguide were 1.96, 1.32, and 1.39 dB/cm, respectively, at three different wavelengths (850, 1310, and 1550 nm). The bending loss for a 15 mm bending radius is as high as 6 dB/cm. Transition and radiation losses dominate overall loss when the bending radius is less than 30 mm. The waveguide was excited using a multimode 850 nm VCSEL transmitter and detected using butt-coupled and lens-coupled receivers. The coupling loss was about 1 dB for the butt-coupling technique and 2 dB for lens coupling. The response bandwidth and the group delay of direct modulated (IF) signal were independent of the channel waveguide for communication speeds up to more than 3 GHz. This technique is viable for low-cost, short-length buried optical waveguides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...