Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 9369, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839200

RESUMO

Asymmetric cell divisions are of fundamental importance for the development of multicellular organisms, e.g. for the generation of founder cells. Prime examples are asymmetric cell divisions in germline precursors during the early embryogenesis of the transparent roundworm Caenorhabditis elegans, one of the major developmental model organisms. However, due to a lack of quantitative data it has remained unclear how frequent unequal daughter cell sizes emerge in the worm's early embryogenesis, and whether these originate from sterical or biochemical cues. Using quantitative light-sheet microscopy, we have found that about 40% of all cell divisions in C. elegans until gastrulation generate daughter cells with significantly different volumes. Removing the embryo's rigid eggshell revealed asymmetric divisions in somatic cells to be primarily induced by steric effects. Division asymmetries in the germline remained unaltered and were correctly reproduced by a model based on a cell-size independent, eccentric displacement of the metaphase plate. Our data suggest that asymmetric cell divisions, imposed by physical determinants, are essential for establishing important cell-cell interactions that eventually fuel a successful embryogenesis.


Assuntos
Divisão Celular Assimétrica , Caenorhabditis elegans/embriologia , Desenvolvimento Embrionário , Algoritmos , Animais , Biomarcadores , Tamanho Celular , Gastrulação , Células Germinativas , Modelos Biológicos , Fuso Acromático/metabolismo
2.
Phys Rev Lett ; 117(18): 188101, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835015

RESUMO

The embryogenesis of the small nematode Caenorhabditis elegans is a remarkably robust self-organization phenomenon. Cell migration trajectories in the early embryo, for example, are well explained by mechanical cues that push cells into positions where they experience the least repulsive forces. Yet, how this mechanically guided progress in development is properly timed has remained elusive so far. Here, we show that cell volumes and division times are strongly anticorrelated during the early embryogenesis of C. elegans with significant differences between somatic cells and precursors of the germline. Our experimental findings are explained by a simple model that in conjunction with mechanical guidance can account for the fail-safe early embryogenesis of C. elegans.


Assuntos
Caenorhabditis elegans/embriologia , Movimento Celular , Desenvolvimento Embrionário , Animais , Células Germinativas/citologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-25768545

RESUMO

Information processing in living cells frequently involves an exchange of peripheral membrane proteins between the cytosol and organelle membranes. The typical time scale τ of these association-dissociation cycles is commonly quantified in vivo via fluorescence recovery after photobleaching (FRAP). Contrary to common assumptions, we show here that τ values determined by FRAP depend on the size and number of target structures. Hence, FRAP times alone are insufficient to draw conclusions about the proteins' binding kinetics. In contrast, extracting primary molecular association and dissociation rates from FRAP approaches provides a size-independent and therefore robust measure for the proteins' binding kinetics. We support our theoretical considerations with experiments on the small GTPase Arf-1 that transiently associates with Golgi membranes: While Arf-1 recovery times in untreated cells and in cells with disrupted microtubules are significantly different, the molecular kinetic rates are shown to be the same in both cases.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Modelos Biológicos , Ligação Proteica/fisiologia , Fator 1 de Ribosilação do ADP/genética , Animais , Células CHO , Cricetulus , Recuperação de Fluorescência Após Fotodegradação , Complexo de Golgi/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Microscopia Confocal , Nocodazol/farmacologia , Probabilidade , Ligação Proteica/efeitos dos fármacos , Moduladores de Tubulina/farmacologia
4.
Cell Metab ; 20(5): 870-881, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25448701

RESUMO

The unfolded protein response (UPR) allows cells to adjust the capacity of the endoplasmic reticulum (ER) to the load of ER-associated tasks. We show that activation of the Caenorhabditis elegans transcription factor DAF-16 and its human homolog FOXO3 restore secretory protein metabolism when the UPR is dysfunctional.We show that DAF-16 establishes alternative ER-associated degradation systems that degrade misfolded proteins independently of the ER stress sensor ire-1 and the ER-associated E3 ubiquitin ligase complex sel-11/sel-1. This is achieved by enabling autophagy-mediated degradation and by increasing the levels of skr-5, a component of an ER associated ubiquitin ligase complex. These degradation systems can act together with the conserved UPR to improve ER homeostasis and ER stress resistance, beyond wild-type levels. Because there is no sensor in the ER that activates DAF-16 in response to intrinsic ER stress, natural or artificial interventions that activate DAF-16 may be useful therapeutic approaches to maintain ER homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Degradação Associada com o Retículo Endoplasmático , Fatores de Transcrição Forkhead/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Autofagia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Estresse do Retículo Endoplasmático , Proteína Forkhead Box O3 , Células HEK293 , Humanos , Mutação , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas
5.
Biophys J ; 105(8): 1805-11, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24138856

RESUMO

Biochemical signaling pathways in developmental processes have been extensively studied, yet the role of mechanical cues during embryogenesis is much less explored. Here we have used selective plane illumination microscopy in combination with a simple mechanical model to quantify and rationalize cell motion during early embryogenesis of the small nematode Caenorhabditis elegans. As a result, we find that cell organization in the embryo until gastrulation is well described by a purely mechanical model that predicts cells to assume positions in which they face the least repulsive interactions from other cells and the embryo's egg shell. Our findings therefore suggest that mechanical interactions are key for a rapid and robust cellular arrangement during early embryogenesis of C. elegans.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/fisiologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Animais , Fenômenos Biomecânicos , Microscopia , Modelos Biológicos , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...