Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 552: 752-763, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176922

RESUMO

In the second part of this series of studies, the bicomponent adsorption of safranin-T (ST) and auramine-O (AO) on trimellitated sugarcane bagasse (STA) was evaluated using equimolar dye aqueous solutions at two pH values. Bicomponent batch adsorption was investigated as a function of contact time, solution pH and initial concentration of dyes. Bicomponent kinetic data were fitted by the pseudo-first-order and pseudo-second-order models and the competitive model of Corsel. Bicomponent equilibrium data were fitted by the real adsorbed solution theory model. The antagonistic interactions between ST and AO in the adsorption systems studied contributed to obtain values of maximum adsorption capacity in mono- (Qmax,mono) and bicomponent (Qmax,multi) lower than unity (Qmax,multi/Qmax,mono at pH 4.5 for ST of 0.75 and AO of 0.37 and at pH 7 for ST of 0.94 and AO of 0.43). Mono- and bicomponent adsorption of dyes in a fixed-bed column was evaluated at pH 4.5. The breakthrough curves were fitted by the Thomas and Bohart-Adams original models. Desorption of ST in a fixed-bed column was studied. The results obtained from the bicomponent batch and continuous adsorption showed that the presence of ST most affected the AO adsorption than the presence of AO affected the ST adsorption.


Assuntos
Materiais Biomiméticos/química , Celulose/química , Corantes/isolamento & purificação , Saccharum/química , Adsorção , Cátions/química , Cátions/isolamento & purificação , Corantes/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Soluções , Propriedades de Superfície , Água/química
2.
J Colloid Interface Sci ; 515: 172-188, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29335184

RESUMO

Trimellitated-sugarcane bagasse (STA) was used as an environmentally friendly adsorbent for removal of the basic dyes auramine-O (AO) and safranin-T (ST) from aqueous solutions at pH 4.5 and 7.0. Dye adsorption was evaluated as a function of STA dosage, agitation speed, solution pH, contact time, and initial dye concentration. Pseudo-first- and pseudo-second-order, Elovich, intraparticle diffusion, and Boyd models were used to model adsorption kinetics. Langmuir, Dubinin-Radushkevich, Redlich-Peterson, Sips, Hill-de Boer, and Fowler-Guggenheim models were used to model adsorption isotherms, while a Scatchard plot was used to evaluate the existence of different adsorption sites. Maximum adsorption capacities for removal of AO and ST were 1.005 and 0.638 mmol g-1 at pH 4.5, and 1.734 and 1.230 mmol g-1 at pH 7.0, respectively. Adsorption enthalpy changes obtained by isothermal titration calorimetry (ITC) ranged from -21.07 ±â€¯0.25 to -7.19 ±â€¯0.05 kJ mol-1, indicating that both dyes interacted with STA by physisorption. Dye desorption efficiencies ranged from 41 to 51%, and re-adsorption efficiencies ranged from 66 to 87%, showing that STA can be reused in new adsorption cycles. ITC data combined with isotherm studies allowed clarification of adsorption interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...