Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34182094

RESUMO

Mercury chloride (HgCl2) acts as a bioaccumulator capable of causing numerous neurological and physiological changes in organisms in a negative way. However, rutin has been considered a very effective antioxidant compound in the treatment of neurodegenerative diseases, as it can neutralize radicals capable of damaging neuronal cells. In this context, this study aimed to evaluate rutin as a neoprotective agent against the damage induced by HgCl2 in Drosophila melanogaster. The exposure of the flies to the agents was carried out in triplicate, and about 150 adult flies were evaluated. To assess the antioxidant action of rutin, MTT, phenanthroline, nitric oxide, total thiols and NPSH tests were carried out in the following concentrations: Control (1500 µL of distilled water), 1 mg/g of HgCl2, 0.5 mg/g of Rutin + HgCl2, 1 mg/g of Rutin + HgCl2, 2 mg/g of Rutin + HgCl2. The locomotion test was verified by negative geotaxis, the result of which showed that flies exposed to HgCl2 had difficulties in flight. The group treated with HgCl2 alone had a high mortality rate, while in combination with different concentrations of rutin, it heard a moderate reduction in the number of deaths, as well as in the negative geotaxis data in which the rutin had a positive effect. An increase in iron (II) levels was observed at the highest concentrations of rutin, while at low concentrations, rutin significantly decreased nitric oxide levels. The HgCl2 + R group (2 mg/g) showed a significant increase in the total thiols content, while for the NPSH all rutin concentrations showed a significant increase in the levels of non-protein thiols. Our results demonstrate that mercury chloride can cause oxidative stress in D. melanogaster. However, the results suggest that rutin has antioxidant and protective effects against the damage caused by HgCl2.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Fármacos Neuroprotetores/farmacologia , Rutina/farmacologia , Animais , Antioxidantes/farmacologia , Drosophila melanogaster/fisiologia , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mortalidade , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Óxido Nítrico/metabolismo , Compostos de Sulfidrila/metabolismo
2.
Curr Microbiol ; 77(12): 3969-3977, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025183

RESUMO

Plants are natural sources of several bioactive substances, which have been found in extracts, secondary metabolites, and essential oils. Several biological activities have been attributed to essential oils as antiviral, insecticidal, antiparasitic, antioxidant, and antimicrobial. The indiscriminate use of antibiotics has increased the development of resistance mechanisms of microorganisms. Thus, search for efficient natural compounds with antimicrobial activity and low toxicity has increased, so essential oils have been a promising alternative for combating microbial infections. This study was carried out to investigate the seasonality effects on the infrared absorbance spectra, antibacterial activity, and antibiotic potentiating activity of essential oils from Vitex gardneriana leaves. Essential oils were extracted from V. gardneriana Schauer leaves the seasonal period from January to December 2016 and characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The antibacterial effect of these oils and antibiotic potentiating activity, both determined by the minimum inhibitory concentration, were assessed using microtiter plates. For the first time, we present the use of infrared absorbance spectra of these essential oils and show the influence of seasonality on them. Synergistic effects were observed for the essential oils associated with the antibiotics tested (gentamicin, ampicillin, and ofloxacin). The main influence of seasonality on the infrared absorbance spectra of the essential oils of the V. gardneriana occurred in the June month (last month of the rainy season). In regard to antibacterial activity test, the essential oils of the V. gardneriana leaves did not show a direct effect on the strains tested. However, the essential oils when associated with the antibiotics showed variations in the minimum inhibitory concentration with the months of the seasonal period, indicating synergistic effects against Escherichia coli and Staphylococcus aureus bacterial resistance.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Vitex , Antibacterianos/farmacologia , Escherichia coli , Análise de Fourier , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
3.
Pestic Biochem Physiol ; 157: 161-168, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153464

RESUMO

Paraquat (PQ) is a widely used herbicide with no antidote which is implicated in the pathogenesis of the Parkinson's disease. The present study then investigated the potential of caffeic acid (CA), a known antioxidant, cardioprotective and neuroprotective molecule to counteract oxidative stress mediated by PQ. In addition, molecular docking was performed to understand the mechanism underlying the inhibitory effect of CA against PQ poisoning. The fruit fly, Drosophila melanogaster, was exposed to PQ (0.44 mg/g of diet) in the absence or presence of CA (0.25, 0.5, 1 and 2 mg/g of died) for 7 days. Data showed that PQ-fed flies had higher incidence of mortality which was associated with mitochondrial dysfunction, increased free Fe(II) content and lipid peroxidation when compared to the control. Co-exposure with CA reduced mortality and markedly attenuated biochemical changes induced by PQ. The mechanism investigated using molecular docking revealed a strong interaction (-6.2 Kcal/mol) of CA with D. melanogaster transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2). This was characterized by the binding of CA to keap-1 domain of Nrf2. Taking together these results indicate the protective effect of CA against PQ-induced oxidative damage in D. melanogaster was likely through its coordination which hinders Nrf2-keap-1 binding leading to an increase of the antioxidant defense system.


Assuntos
Ácidos Cafeicos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Animais , Drosophila melanogaster , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...