Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2321441121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861597

RESUMO

Legacy effects describe the persistent, long-term impacts on an ecosystem following the removal of an abiotic or biotic feature. Redlining, a policy that codified racial segregation and disinvestment in minoritized neighborhoods, has produced legacy effects with profound impacts on urban ecosystem structure and health. These legacies have detrimentally impacted public health outcomes, socioeconomic stability, and environmental health. However, the collateral impacts of redlining on wildlife communities are uncertain. Here, we investigated whether faunal biodiversity was associated with redlining. We used home-owner loan corporation (HOLC) maps [grades A (i.e., "best" and "greenlined"), B, C, and D (i.e., "hazardous" and "redlined")] across four cities in California and contributory science data (iNaturalist) to estimate alpha and beta diversity across six clades (mammals, birds, insects, arachnids, reptiles, and amphibians) as a function of HOLC grade. We found that in greenlined neighborhoods, unique species were detected with less sampling effort, with redlined neighborhoods needing over 8,000 observations to detect the same number of unique species. Historically redlined neighborhoods had lower native and nonnative species richness compared to greenlined neighborhoods across each city, with disparities remaining at the clade level. Further, community composition (i.e., beta diversity) consistently differed among HOLC grades for all cities, including large differences in species assemblage observed between green and redlined neighborhoods. Our work spotlights the lasting effects of social injustices on the community ecology of cities, emphasizing that urban conservation and management efforts must incorporate an antiracist, justice-informed lens to improve biodiversity in urban environments.


Assuntos
Animais Selvagens , Biodiversidade , Cidades , Animais , California , Ecossistema , Humanos , Conservação dos Recursos Naturais
3.
Proc Natl Acad Sci U S A ; 121(17): e2318596121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621142

RESUMO

While there is increasing recognition that social processes in cities like gentrification have ecological consequences, we lack nuanced understanding of the ways gentrification affects urban biodiversity. We analyzed a large camera trap dataset of mammals (>500 g) to evaluate how gentrification impacts species richness and community composition across 23 US cities. After controlling for the negative effect of impervious cover, gentrified parts of cities had the highest mammal species richness. Change in community composition was associated with gentrification in a few cities, which were mostly located along the West Coast. At the species level, roughly half (11 of 21 mammals) had higher occupancy in gentrified parts of a city, especially when impervious cover was low. Our results indicate that the impacts of gentrification extend to nonhuman animals, which provides further evidence that some aspects of nature in cities, such as wildlife, are chronically inaccessible to marginalized human populations.


Assuntos
Biodiversidade , Segregação Residencial , Animais , Humanos , Cidades , Mamíferos , Animais Selvagens , Ecossistema
4.
J Anim Ecol ; 93(2): 132-146, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38213300

RESUMO

How animals use the diel period (24-h light-dark cycle) is of fundamental importance to understand their niche. While ecological and evolutionary literature abound with discussion of diel phenotypes (e.g. diurnal, nocturnal, crepuscular, cathemeral), they lack clear and explicit quantitative definitions. As such, inference can be confounded when evaluating hypotheses of animal diel niche switching or plasticity across studies because researchers may be operating under different definitions of diel phenotypes. We propose quantitative definitions of diel phenotypes using four alternative hypothesis sets (maximizing, traditional, general and selection) aimed at achieving different objectives. Each hypothesis set is composed of mutually exclusive hypotheses defined based on the activity probabilities in the three fundamental periods of light availability (twilight, daytime and night-time). We develop a Bayesian modelling framework that compares diel phenotype hypotheses using Bayes factors and estimates model parameters using a multinomial model with linear inequality constraints. Model comparison, parameter estimation and visualizing results can be done in the Diel.Niche R package. A simplified R Shiny web application is also available. We provide extensive simulation results to guide researchers on the power to discriminate among hypotheses for a range of sample sizes (10-1280). We also work through several examples of using data to make inferences on diel activity, and include online vignettes on how to use the Diel.Niche package. We demonstrate how our modelling framework complements other analyses, such as circular kernel density estimators and animal movement modelling. Our aim is to encourage standardization of the language of diel activity and bridge conceptual frameworks and hypotheses in diel research with data and models. Lastly, we hope more research focuses on the ecological and conservation importance of understanding how animals use diel time.


Assuntos
Evolução Biológica , Movimento , Animais , Teorema de Bayes
5.
Nat Ecol Evol ; 7(10): 1654-1666, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667002

RESUMO

Human-driven environmental changes shape ecological communities from local to global scales. Within cities, landscape-scale patterns and processes and species characteristics generally drive local-scale wildlife diversity. However, cities differ in their structure, species pools, geographies and histories, calling into question the extent to which these drivers of wildlife diversity are predictive at continental scales. In partnership with the Urban Wildlife Information Network, we used occurrence data from 725 sites located across 20 North American cities and a multi-city, multi-species occupancy modelling approach to evaluate the effects of ecoregional characteristics and mammal species traits on the urbanization-diversity relationship. Among 37 native terrestrial mammal species, regional environmental characteristics and species traits influenced within-city effects of urbanization on species occupancy and community composition. Species occupancy and diversity were most negatively related to urbanization in the warmer, less vegetated cities. Additionally, larger-bodied species were most negatively impacted by urbanization across North America. Our results suggest that shifting climate conditions could worsen the effects of urbanization on native wildlife communities, such that conservation strategies should seek to mitigate the combined effects of a warming and urbanizing world.

6.
J Anim Ecol ; 92(2): 263-272, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35332554

RESUMO

Global climate change impacts species and ecosystems in potentially harmful ways. For migratory bird species, earlier spring warm-up could lead to a mismatch between nesting activities and food availability. CO2 provides a useful proxy for temperature and an environmental indicator of climate change when temperature data are not available for an entire time series. Our objectives were to (a) examine nesting phenology over time; (b) determine how nesting phenology relates to changes in atmospheric CO2 concentration; and (c) demonstrate the usefulness of historical museum collections combined with modern observations for trend analyses. We assessed changes in nesting dates of 72 bird species in the Upper Midwest of the United States by comparing contemporary lay dates with those obtained from archived, historical museum nest records over a 143-year period (1872-2015). Species-specific changes in lay date per one unit change in the CO2 residual ranged from -0.75 (95% CI: -1.57 to -0.10) to 0.45 (95% CI: -0.29 to 1.43). Overall, lay dates advanced ~10 days over the 143-year period. Resident, short-distance migrants and long-distance migrants lay dates advanced by ~15, 18 and 16 days on average respectively. Twenty-four species (33.3%) significantly advanced, one (1.4%) significantly delayed and we failed to detect an advance or delay in lay date for 47 species (65.3%). Overall mean advance in first lay date (for the species that have significantly advanced laying date) was 25.1 days (min: 10.7, max: 49.9). Our study highlights the scientific importance of both data gathering and archiving through time to understand phenological change. The detailed archived information reported by egg collectors provide the early data of our study. As with studies of egg-shell thinning and pesticide exposure, our use of these data illustrates another scientific utility of egg collections that these pioneer naturalists never imagined. As museums archive historical data, these locations are also ideal candidates to store contemporary field data as it is collected. Together, such information will provide the ability to track, understand and perhaps predict responses to human-driven environmental change.


Assuntos
Ecossistema , Museus , Humanos , Animais , Mudança Climática , Dióxido de Carbono , Aves/fisiologia , Estações do Ano , Temperatura
7.
Urban Ecosyst ; 26(1): 127-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36196074

RESUMO

Reduced human activity to mitigate the spread of the COVID-19 pandemic was accompanied by reports of unusual wildlife sightings in highly developed areas. Such experiences with urban nature may have helped residents cope with the stress of the pandemic and increased public interest in urban wildlife; however, this may depend on the species residents encountered. In this study, we surveyed Chicago, Illinois, USA residents during a stay-at-home order to understand if residents in more affluent or greener neighborhoods saw more wildlife species. We also evaluated whether encounters with pest and non-pest species were associated with residents' values about wildlife. Of 593 responses included in our analyses, respondents in higher-income and greener neighborhoods were more likely to perceive increased wildlife sightings and respondents in higher-income areas reported observing a higher number common birds and mammals. Support for seeing wildlife in residential areas was associated with seeing passerine birds and not seeing rats during the stay-at-home order. Our results suggest that perceived increases in wildlife sightings were common during a stay-at-home order, especially for affluent residents, and that residents' perceptions depended on the species encountered. Understanding how changes in human behavior modifies human-wildlife interactions can help mitigate human-wildlife conflict and foster positive engagement with local wildlife. Supplementary Information: The online version contains supplementary material available at 10.1007/s11252-022-01284-x.

8.
Am Nat ; 200(4): 556-570, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150193

RESUMO

AbstractCurrent methods to model species habitat use through space and diel time are limited. Development of such models is critical when considering rapidly changing habitats where species are forced to adapt to anthropogenic change, often by shifting their diel activity across space. We use an occupancy modeling framework to specify the multistate diel occupancy model (MSDOM), which can evaluate species diel activity against continuous response variables that may impact diel activity within and across seasons or years. We used two case studies, fosas in Madagascar and coyotes in Chicago, Illinois, to conceptualize the application of this model and to quantify the impacts of human activity on species spatial use in diel time. We found support that both species varied their habitat use by diel states-in and across years and by human disturbance. Our results exemplify the importance of understanding animal diel activity patterns and how human disturbance can lead to temporal habitat loss. The MSDOM will allow more focused attention in ecology and evolution studies on the importance of the short temporal scale of diel time in animal-habitat relationships and lead to improved habitat conservation and management.


Assuntos
Ecologia , Ecossistema , Animais , Atividades Humanas , Humanos , Estações do Ano
9.
Ecol Appl ; 32(7): e2647, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535608

RESUMO

To mitigate human-wildlife conflict it is imperative to know where and when conflict occurs. However, standard methods used to predict the occurrence of human-wildlife conflict often fail to recognize how a species distribution likely limits where and when conflict may happen. As such, methods that predict human-wildlife conflict could be improved if they could identify where conflict will occur relative to species' underlying distribution. To this end, we used an integrated species distribution model that combined presence-only wildlife complaints with data from a systematic camera trapping survey throughout Chicago, Illinois. This model draws upon both data sources to estimate a latent distribution of species; in addition, the model can estimate where conflict is most likely to occur within that distribution. We modeled the occupancy and conflict potential of coyote (Canis latrans), Virginia opossum (Didelphis virginiana), and raccoon (Procyon lotor) as a function of urban intensity, per capita income, and home vacancy rates throughout Chicago. Overall, the distribution of each species constrained the spatiotemporal patterns of conflict throughout the city of Chicago. Within each species distribution, we found that human-wildlife conflict was most likely to occur where humans and wildlife habitat overlap (e.g., featuring higher-than-average canopy cover and housing density). Furthermore, human-wildlife conflict was most likely to occur in high-income neighborhoods for Virginia opossum and raccoon, despite the fact that those two species have higher occupancy in low-income neighborhoods. As such, knowing where species are distributed can inform guidelines on where wildlife management should be focused, especially if it overlaps with human habitats. Finally, because this integrated model can incorporate data that have already been collected by wildlife managers or city officials, this approach could be used to develop stronger collaborations with wildlife management agencies and conduct applied research that will inform landscape-scale wildlife management.


Assuntos
Animais Selvagens , Guaxinins , Animais , Cidades , Ecossistema , Humanos , Gambás
10.
Proc Biol Sci ; 289(1973): 20212599, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473378

RESUMO

In zoos, primates experience markedly different interactions with familiar humans, such as the zookeepers who care for them, compared with those with unfamiliar humans, such as the large volume of zoo visitors to whom they are regularly exposed. While the behaviour of zoo-housed primates in the presence of unfamiliar, and to a lesser extent familiar, humans has received considerable attention, if and how they spontaneously distinguish familiar from unfamiliar people, and the cognitive mechanisms underlying the relationships they form with familiar and unfamiliar humans, remain poorly understood. Using a dot-probe paradigm, we assessed whether primates (chimpanzees and gorillas) show an attentional bias toward the faces of familiar humans, with whom the apes presumably had a positive relationship. Contrary to our predictions, all subjects showed a significant attentional bias toward unfamiliar people's faces compared with familiar people's faces when the faces showed a neutral expression, both with and without a surgical face mask on, but no significant attentional bias when the faces showed a surprised expression. These results demonstrate that apes can spontaneously categorize humans based on familiarity and we argue that the attentional biases the apes showed for unfamiliar human faces reflect a novelty effect.


Assuntos
Viés de Atenção , Hominidae , Animais , Atenção , Humanos , Pan troglodytes/psicologia , Reconhecimento Psicológico
11.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357308

RESUMO

Time is a fundamental component of ecological processes. How animal behavior changes over time has been explored through well-known ecological theories like niche partitioning and predator-prey dynamics. Yet, changes in animal behavior within the shorter 24-hr light-dark cycle have largely gone unstudied. Understanding if an animal can adjust their temporal activity to mitigate or adapt to environmental change has become a recent topic of discussion and is important for effective wildlife management and conservation. While spatial habitat is a fundamental consideration in wildlife management and conservation, temporal habitat is often ignored. We formulated a temporal resource selection model to quantify the diel behavior of 8 mammal species across 10 US cities. We found high variability in diel activity patterns within and among species and species-specific correlations between diel activity and human population density, impervious land cover, available greenspace, vegetation cover, and mean daily temperature. We also found that some species may modulate temporal behaviors to manage both natural and anthropogenic risks. Our results highlight the complexity with which temporal activity patterns interact with local environmental characteristics, and suggest that urban mammals may use time along the 24-hr cycle to reduce risk, adapt, and therefore persist, and in some cases thrive, in human-dominated ecosystems.


Assuntos
Ecossistema , Urbanização , Animais , Cidades , Mamíferos , Densidade Demográfica
12.
Am Nat ; 199(1): 159-167, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34978969

RESUMO

AbstractIn 1898, Herbert and Alice Walter started a 5-year survey of birds in Lincoln Park-the largest park in Chicago, Illinois-and summarized their data in an urban birding field guide, Wild Birds in City Parks. Twenty-nine years later, William Dreuth compared the relative frequency of species in the Walters' study to that in his own 5-year Lincoln Park survey. Between 2012 and 2015, we replicated these surveys to investigate a century of bird diversity and community composition change in urban Chicago. While species richness did not change, community composition did. We found that (1) species with a greater diet breadth and (2) species that increased in statewide occupancy were more likely to increase in frequency over time. We conclude that factors at multiple scales brought temporal changes to Chicago's bird community. Overall, this survey highlights the slow and subtle ways in which species may respond to a century of urban intensification.


Assuntos
Biodiversidade , Aves , Animais , Animais Selvagens , Cidades , Ecossistema
13.
Glob Chang Biol ; 27(21): 5446-5459, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405496

RESUMO

Urban biodiversity provides critical ecosystem services and is a key component to environmentally and socially sustainable cities. However, biodiversity varies greatly within and among cities, leading to human communities with changing and unequal experiences with nature. The "luxury effect," a hypothesis that predicts a positive correlation between wealth, typically measured by per capita income, and species richness may be one indication of these inequities. While the luxury effect is well studied for some taxa, it has rarely been investigated for mammals, which provide unique ecosystem services (e.g., biological pest control) and exhibit significant potential for negative human-wildlife interactions (e.g., nuisances or conflicts). We analyzed a large dataset of mammal detections across 20 North American cities to test whether the luxury effect is consistent for medium- to large-sized terrestrial mammals across diverse urban contexts. Overall, support for the luxury effect, as indicated by per capita income, was inconsistent; we found evidence of a luxury effect in approximately half of our study cities. Species richness was, however, highly and negatively correlated with urban intensity in most cities. We thus suggest that economic factors play an important role in shaping urban mammal communities for some cities and species, but that the strongest driver of urban mammal diversity is urban intensity. To better understand the complexity of urban ecosystems, ecologists and social scientists must consider the social and political factors that drive inequitable human experiences with nature in cities.


Assuntos
Ecossistema , Urbanização , Animais , Biodiversidade , Cidades , Humanos , Mamíferos
14.
J Anim Ecol ; 90(8): 1973-1984, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942308

RESUMO

Camera traps are an increasingly popular tool to monitor wildlife distributions. However, traditional analytical approaches to camera trap data are difficult to apply to visible wildlife characteristics in single images, such as infection status. Several parasites produce visible signs of infection that could be sampled via camera traps. Sarcoptic mange Sarcoptes scabiei is an ideal disease to study using cameras because it results in visible hair loss and affects a broad host range. Here, we developed a multi-state occupancy model to estimate the occurrence of mange in coyotes Canis latrans across an urban gradient. This model incorporates a secondary detection function for apparent by-image infection status to provide detection-corrected estimates of mange occurrence. We analysed a multi-year camera trap dataset in Chicago, Illinois, United States, to test whether the apparent occurrence of sarcoptic mange in coyotes Canis latrans increases with urbanization or varies through time. We documented visible signs consistent with current or recovering mange infection and variables we hypothesized would improve mange detection: The proportion of the coyote in frame, image blur and whether the image was in colour. We were more likely to detect coyotes with mange in images that were less blurry, in colour, and if a greater proportion of the coyote was visible. Mangy coyote occupancy was significantly higher in urban developed areas with low housing density and higher canopy cover whereas coyote occupancy, mangy or otherwise, decreased with urbanization. By incorporating image quality into our by-image detection function, we provide a robust method to non-invasively survey visible aspects of wildlife health with camera traps. Apparently mangy coyotes were associated with low-density forested neighbourhoods, which may offer vegetated areas while containing sources of anthropogenic resources. This association may contribute to human-wildlife conflict and reinforces posited relationships between infection risk and habitat use. More generally, our model could provide detection-corrected occupancy estimates of visible characteristics that vary by image such as body condition or injuries.


Assuntos
Coiotes , Escabiose , Animais , Animais Selvagens , Humanos , Sarcoptes scabiei , Escabiose/veterinária , Urbanização
15.
Ecol Appl ; 31(2): e02253, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141996

RESUMO

Understanding how biodiversity responds to urbanization is challenging, due in part to the single-city focus of most urban ecological research. Here, we delineate continent-scale patterns in urban species assemblages by leveraging data from a multi-city camera trap survey and quantify how differences in greenspace availability and average housing density among 10 North American cities relate to the distribution of eight widespread North American mammals. To do so, we deployed camera traps at 569 sites across these ten cities between 18 June and 14 August. Most data came from 2017, though some cities contributed 2016 or 2018 data if it was available. We found that the magnitude and direction of most species' responses to urbanization within a city were associated with landscape-scale differences among cities. For example, eastern gray squirrel (Sciurus carolinensis), fox squirrel (Sciurus niger), and red fox (Vulpes vulpes) responses to urbanization changed from negative to positive once the proportion of green space within a city was >~20%. Likewise, raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana) responses to urbanization changed from positive to negative once the average housing density of a city exceeded about 700 housing units/km2 . We also found that local species richness within cities consistently declined with urbanization in only the more densely developed cities (>~700 housing units/km2 ). Given our results, it may therefore be possible to design cities to better support biodiversity and reduce the negative influence of urbanization on wildlife by, for example, increasing the amount of green space within a city. Additionally, it may be most important for densely populated cities to find innovative solutions to bolster wildlife resilience because they were the most likely to observe diversity losses of common urban species.


Assuntos
Ecossistema , Urbanização , Animais , Biodiversidade , Cidades , Mamíferos
16.
Ecosphere ; 11(8): e03215, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32834907

RESUMO

During the worldwide shutdown in response to the COVID-19 pandemic, many reports emerged of urban wildlife sightings. While these images garnered public interest and declarations of wildlife reclaiming cities, it is unclear whether wildlife truly reoccupied urban areas or whether there were simply increased detections of urban wildlife during this time. Here, we detail key questions and needs for monitoring wildlife during the COVID-19 shutdown and then link these with future needs and actions with the intent of improving conservation within urban ecosystems. We discuss the tools ecologists and conservation scientists can use to safely and effectively study urban wildlife during the shutdown. With a coordinated, multicity effort, researchers and community scientists can rigorously investigate the responses of wildlife to changes in human activities, which can help us address long-standing questions in urban ecology, inspire conservation of wildlife, and inform the design of sustainable cities.

17.
Zoonoses Public Health ; 67(6): 673-683, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583624

RESUMO

Rat-associated zoonoses transmitted through faeces or urine are of particular concern for public health because environmental exposure in homes and businesses may be frequent and undetected. To identify times and locations with greater public health risks from rats, we investigated whether rat characteristics, environmental features, socioeconomic factors, or season could predict rat infection risk across diverse urban neighbourhoods. In partnership with a pest management company, we sampled rats in 13 community areas along an income gradient in Chicago, a large city where concern about rats has increased in recent years. We collected kidneys for Leptospira spp. testing and colon contents for aerobic bacteria such as Salmonella spp. and Escherichia coli. Of 202 sampled rats, 5% carried Leptospira spp. and 22% carried E. coli. Rats were significantly more likely to carry Leptospira spp. on blocks with more standing water complaints in higher-income neighbourhoods (OR = 6.74, 95% CI: 1.54-29.39). Rats were significantly more likely to carry E. coli on blocks with more food vendors (OR = 9.94, 2.27-43.50) particularly in low-income neighbourhoods (OR = 0.26, 0.09-0.82) and in the spring (OR = 15.96, 2.90-88.62). We detected a high diversity of E. coli serovars but none contained major virulence factors. These associations between environmental features related to sanitation and infection risk in rats support transmission through water for Leptospira spp. and faecal-oral transmission for E. coli. We also found opposing relationships between zoonotic infection risk and income for these two pathogens. Thus, our results highlight the importance of sanitation for predicting zoonotic disease risks and including diverse urban areas in pathogen surveillance to mitigate public health risks from rats.


Assuntos
Infecções Bacterianas/veterinária , Doenças dos Roedores/microbiologia , Zoonoses , Animais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Chicago/epidemiologia , Feminino , Humanos , Masculino , Razão de Chances , Ratos , Fatores de Risco , Saneamento , Fatores Socioeconômicos
18.
J Anim Ecol ; 88(5): 793-803, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822366

RESUMO

Urbanization is considered the fastest growing form of global land-use change and can dramatically modify habitat structure and ecosystem functioning. While ecological processes continue to operate within cities, urban ecosystems are profoundly different from their more natural counterparts. Thus, ecological predictions derived from more natural ecosystems are rarely generalizable to urban environments. In this study, we used data from a large-scale and long-term camera trap project in Chicago IL, USA, to determine whether urbanization alters predator-avoidance behaviour of urban prey species. We studied three behavioural mechanisms often induced by the fear of predation (spatial distribution, daily activity patterns and vigilance) of white-tailed deer (Odocoileus virginianus) and eastern cottontail (Sylvilagus floridanus) when coyote (Canis latrans)-an urban apex predator-was present. We found no evidence of spatial segregation between coyote and either prey species. Furthermore, neither white-tailed deer nor eastern cottontail changed their daily activity or increased vigilance in urban areas when coyotes were present. Eastern cottontail, however, had their uppermost level of vigilance in highly urban sites when coyotes were absent. Our study demonstrates that predator-prey dynamics might be modified in urban ecosystems-moving from what is traditionally thought of as a two-player system (predator and prey) to a three-player system (predator, prey and people).


Assuntos
Ecossistema , Urbanização , Animais , Aprendizagem da Esquiva , Cidades , Coiotes , Comportamento Predatório
19.
Behav Res Methods ; 51(2): 639-650, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29949070

RESUMO

Typically, animals' food preferences are tested manually, which can be both time-consuming and vulnerable to experimenter biases. Given the utility of ascertaining animals' food preferences for research and husbandry protocols, developing a quick, reliable, and flexible paradigm would be valuable for expediting many research protocols. Therefore, we evaluated the efficacy of using a touchscreen interface to test nonhuman primates' food preferences and valuations, adapting previously validated manual methods. We tested a nonhuman primate subject with four foods (carrot, cucumber, grape, and turnip). Preference testing followed a pairwise forced choice protocol with pairs of food images presented on a touchscreen: The subject was rewarded with whichever food was selected. All six possible pairwise combinations were presented, with 90 trials per pairing. Second, we measured how hard the subject was willing to work to obtain each of the four foods, allowing us to generate demand curves. For this phase, a single image of a food item was presented on the touchscreen that the subject had to select in order to receive the food, and the number of selections required increased following a quarter-log scale, with ten trials per cost level (1, 2, 3, 6, 10, and 18). These methods allowed us to ascertain the subject's relative preferences and valuations of the four foods. The success of this touchscreen protocol for testing the subject's food preferences, from both a practical and a theoretical standpoint, suggests that the protocol should be further validated with other foods with this subject, with other subjects, and with other test items.


Assuntos
Comportamento Animal , Comportamento de Escolha , Computadores de Mão , Preferências Alimentares/psicologia , Recompensa , Animais , Gorilla gorilla , Masculino , Análise e Desempenho de Tarefas
20.
Elife ; 72018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277209

RESUMO

Careful design of the green spaces in cities will benefit both wild animals and humans.


Assuntos
Biodiversidade , Urbanização , Animais , Animais Selvagens , Cidades , Ecossistema , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...