Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(6): 2152-2155, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28099009

RESUMO

We demonstrate controlled synthesis of discrete two-dimensional (2D) PbSe nanoplatelets (NPLs), with measurable photoluminescence, via oriented attachment directed by quantum dot (QD) surface chemistry. Halide passivation is critical to the growth of these (100) face-dominated NPLs, as corroborated by density functional theory studies. PbCl2 moieties attached to the (111) and (110) of small nanocrystals form interparticle bridges, aligning the QDs and leading to attachment. We find that a 2D bridging network is energetically favored over a 3D network, driving the formation of NPLs. Although PbI2 does not support bridging, its presence destabilizes the large (100) faces of NPLs, providing means for tuning NPL thickness. Spectroscopic analysis confirms the predicted role of thickness-dependent quantum confinement on the NPL band gap.

2.
Chem Rev ; 116(18): 10513-622, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677521

RESUMO

The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminescent solar concentrators; and control of intraband relaxation for enhanced carrier multiplication in advanced QD photovoltaics. We examine the considerable recent progress on these multiple fronts of nanocrystal research, which has resulted in the first commercialized QD technologies. These successes explain the continuing appeal of this field to a broad community of scientists and engineers, which in turn ensures even more exciting results to come from future exploration of this fascinating class of materials.

3.
J Am Chem Soc ; 137(48): 15074-7, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26545157

RESUMO

The rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead to elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.

4.
Nat Commun ; 6: 8185, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345390

RESUMO

In carrier multiplication, the absorption of a single photon results in two or more electron-hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. Here we report ultrafast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects of electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices.

5.
J Phys Chem Lett ; 5(1): 196-204, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24719679

RESUMO

The creation and manipulation of quantum superpositions is a fundamental goal for the development of materials with novel optoelectronic properties. In this letter, we report persistent (~80 fs lifetime) quantum coherence between the 1S and 1P excitonic states in zinc-blende colloidal CdSe quantum dots at room temperature, measured using Two-Dimensional Electronic Spectroscopy. We demonstrate that this quantum coherence manifests as an intradot phenomenon, the frequency of which depends on the size of the dot excited within the ensemble of QDs. We model the lifetime of the coherence and demonstrate that correlated interexcitonic fluctuations preserve relative phase between excitonic states. These observations suggest an avenue for engineering long-lived interexcitonic quantum coherence in colloidal quantum dots.

6.
Nat Commun ; 5: 3286, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24504144

RESUMO

Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Rhodobacter sphaeroides/metabolismo , Análise Espectral/métodos
7.
J Chem Phys ; 139(15): 155101, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24160544

RESUMO

Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Rhodobacter sphaeroides/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Modelos Moleculares , Análise Espectral
8.
J Phys Chem Lett ; 4(9): 1404-1409, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23878622

RESUMO

The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

9.
J Phys Chem A ; 117(39): 9444-53, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23421704

RESUMO

We present a theory for a bath model in which we approximate the adiabatic nuclear potential surfaces on the ground and excited electronic states by displaced harmonic oscillators that differ in curvature. Calculations of the linear and third-order optical response functions employ an effective short-time approximation coupled with the cumulant expansion. In general, all orders of correlation contribute to the optical response, indicating that the solvation process cannot be described as Gaussian within the model. Calculations of the linear absorption and fluorescence spectra resulting from the theory reveal a stronger temperature dependence of the Stokes shift along with a general asymmetry between absorption and fluorescence line shapes, resulting purely from the difference in the phonon side band. We discuss strategies for controlling spectral tuning and energy-transfer dynamics through the manipulation of the excited-state and ground-state curvature. Calculations of the nonlinear response also provide insights into the dynamics of the system-bath interactions and reveal that multidimensional spectroscopies are sensitive to a difference in curvature between the ground- and excited-state adiabatic surfaces. This extension allows for the elucidation of short-time dynamics of dephasing that are accessible in nonlinear spectroscopic methods.

10.
J Phys Chem Lett ; 4(21): 3636-3640, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24478821

RESUMO

Two-dimensional electronic spectroscopy (2DES) elucidates electronic structure and dynamics on a femtosecond time scale and has proven to be an incisive tool for probing congested linear spectra of biological systems. However, samples that scatter light intensely frustrate 2DES analysis, necessitating the use of isolated protein chromophore complexes when studying photosynthetic energy transfer processes. We present a method for conducting 2DES experiments that takes only seconds to acquire thousands of 2DES spectra and permits analysis of highly scattering samples, specifically whole cells of the purple bacterium Rhodobacter sphaeroides. These in vivo 2DES experiments reveal similar timescales for energy transfer within the antennae complex (light harvesting complex 2, LH2) both in the native photosynthetic membrane environment and in isolated detergent micelles.

11.
J Chem Phys ; 137(2): 024507, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22803547

RESUMO

Broadband two-dimensional electronic spectroscopy (2DES) can assist in understanding complex electronic and vibrational signatures. In this paper, we use 2DES to examine the electronic structure and dynamics of a long chain cyanine dye (1,1-diethyl-4,4-dicarbocyanine iodide, or DDCI-4), a system with a vibrational progression. Using broadband pulses that span the resonant electronic transition, we measure two-dimensional spectra that show a characteristic six peak pattern from coherently excited ground and excited state vibrational modes. We model these features using a spectral density formalism and the vibronic features are assigned to Feynman pathways. We also examine the dynamics of a particular set of peaks demonstrating anticorrelated peak motion, a signature of oscillatory wavepacket dynamics on the ground and excited states. These dynamics, in concert with the general structure of vibronic two-dimensional spectra, can be used to distinguish between pure electronic and vibrational quantum coherences.

12.
J Chem Phys ; 136(10): 104505, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423846

RESUMO

Long-lived excitonic coherence in photosynthetic proteins has become an exciting area of research because it may provide design principles for enhancing the efficiency of energy transfer in a broad range of materials. In this publication, we provide new evidence that long-lived excitonic coherence in the Fenna-Mathew-Olson pigment-protein (FMO) complex is consistent with the assumption of cross correlation in the site basis, indicating that each site shares bath fluctuations. We analyze the structure and character of the beating crosspeak between the two lowest energy excitons in two-dimensional (2D) electronic spectra of the FMO Complex. To isolate this dynamic signature, we use the two-dimensional linear prediction Z-transform as a platform for filtering coherent beating signatures within 2D spectra. By separating signals into components in frequency and decay rate representations, we are able to improve resolution and isolate specific coherences. This strategy permits analysis of the shape, position, character, and phase of these features. Simulations of the crosspeak between excitons 1 and 2 in FMO under different regimes of cross correlation verify that statistically independent site fluctuations do not account for the elongation and persistence of the dynamic crosspeak. To reproduce the experimental results, we invoke near complete correlation in the fluctuations experienced by the sites associated with excitons 1 and 2. This model contradicts ab initio quantum mechanic∕molecular mechanics simulations that observe no correlation between the energies of individual sites. This contradiction suggests that a new physical model for long-lived coherence may be necessary. The data presented here details experimental results that must be reproduced for a physical model of quantum coherence in photosynthetic energy transfer.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Proteínas/química , Fenômenos Físicos , Teoria Quântica , Análise Espectral
13.
J Phys Chem A ; 116(1): 282-9, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22191993

RESUMO

Recent experiments on a variety of photosynthetic antenna systems have revealed that coherences among electronic states persist longer than previously anticipated. In an ensemble measurement, the observed dephasing of a coherent state can occur because of either disorder across the ensemble or decoherence from interactions with the bath. Distinguishing how much such disorder affects the experimentally observed dephasing rate is paramount for understanding the role that quantum coherence may play in energy transfer through these complexes. Here, we show that two-dimensional electronic spectra can distinguish between the limiting cases of homogeneous dephasing (decoherence) and inhomogeneous dephasing by examining how the quantum beat frequency changes within a cross peak. For the antenna complex LH2 isolated from Rhodobacter sphaeroides , we find that dephasing of the coherence between the B850 and B800 rings arises predominantly from inhomogeneity. In contrast, within the Fenna-Matthews-Olson (FMO) complex from Chlorobium tepidum , dephasing of the coherence between the first two excitons appears quite homogeneous. Thus, the observed dephasing rate sets an upper bound on decoherence for the LH2 complex while establishing both an upper and lower bound for the FMO complex.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Chlorobium/fisiologia , Elétrons , Transferência de Energia , Modelos Químicos , Fotossíntese , Teoria Quântica , Rhodobacter sphaeroides/fisiologia , Análise Espectral , Termodinâmica
14.
J Phys Chem A ; 115(16): 3787-96, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21090733

RESUMO

Two-dimensional electronic spectroscopy (2D ES) maps the electronic structure of complex systems on a femtosecond time scale. While analogous to multidimensional NMR spectroscopy, 2D optical spectroscopy differs significantly in its implementation. Yet, 2D Fourier spectroscopies still require point-by-point sampling of the time delay between two pulses responsible for creating quantum coherence among states. Unlike NMR, achieving the requisite phase stability at optical frequencies between these pulse pairs remains experimentally challenging. Nonetheless, 2D optical spectroscopy has been successfully demonstrated by combining passive and active phase stabilization along with precise control of optical delays and long-term temperature stability, although the widespread adoption of 2D ES has been significantly hampered by these technical challenges. Here, we exploit an analogy to magnetic resonance imaging (MRI) to demonstrate a single-shot method capable of acquiring the entire 2D spectrum in a single laser shot using only conventional optics. Unlike point-by-point sampling protocols typically used to record 2D spectra, this method, which we call GRadient-Assisted Photon Echo (GRAPE) spectroscopy, largely eliminates phase errors while reducing the acquisition time by orders of magnitude. By incorporating a spatiotemporal encoding of the nonlinear polarization along the excitation frequency axis of the 2D spectrum, GRAPE spectroscopy achieves no loss in signal while simultaneously reducing overall noise. Here, we describe the principles of GRAPE spectroscopy and discuss associated experimental considerations.


Assuntos
Espectroscopia Fotoeletrônica , Imageamento por Ressonância Magnética , Teoria Quântica , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 107(38): 16444-7, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20810917

RESUMO

Electronic structure and dynamics determine material properties and behavior. Important time scales for electronic dynamics range from attoseconds to milliseconds. Two-dimensional optical spectroscopy has proven an incisive tool to probe fast spatiotemporal electronic dynamics in complex multichromophoric systems. However, acquiring these spectra requires long point-by-point acquisitions that preclude observations on the millisecond and microsecond time scales. Here we demonstrate that imaging temporally encoded information within a homogeneous sample allows mapping of the evolution of the electronic Hamiltonian with femtosecond temporal resolution in a single-laser-shot, providing real-time maps of electronic coupling. This method, which we call GRadient-Assisted Photon Echo spectroscopy (GRAPE), eliminates phase errors deleterious to Fourier spectroscopies while reducing the acquisition time by orders of magnitude using only conventional optical components. In analogy to MRI in which magnetic field gradients are used to create spatial correlation maps, GRAPE spectroscopy takes advantage of a similar type of spatial encoding to construct electronic correlation maps. Unlike magnetic resonance, however, this spatial encoding of the nonlinear polarization along the excitation frequency axis of the two-dimensional spectrum results in no loss in signal while simultaneously reducing overall noise. Correlating the energy transfer events and electronic coupling occurring in tens of femtoseconds with slow dynamics on the subsecond time scale is fundamentally important in photobiology, solar energy research, nonlinear spectroscopy, and optoelectronic device characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...