Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0032824, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38712952

RESUMO

Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed a complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates upon prolonged incubation. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research.IMPORTANCEFrom soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts the construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well-documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between Vibrio fischeri and its squid host Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.


Assuntos
Aliivibrio fischeri , Proteínas de Bactérias , Decapodiformes , Fosfatos , Simbiose , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Aliivibrio fischeri/enzimologia , Decapodiformes/microbiologia , Animais , Fosfatos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Desoxirribonucleases/metabolismo , Desoxirribonucleases/genética
3.
Appl Environ Microbiol ; 88(22): e0163522, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36342139

RESUMO

Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates after 72 h. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research. IMPORTANCE From soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between V. fischeri and its squid host, Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.


Assuntos
Aliivibrio fischeri , Decapodiformes , Animais , Aliivibrio fischeri/genética , Decapodiformes/microbiologia , Simbiose , Fosfatos , Biofilmes
4.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397700

RESUMO

Vibrio species, including the squid symbiont Vibrio fischeri, become competent to take up DNA under specific conditions. For example, V. fischeri becomes competent when grown in the presence of chitin oligosaccharides or upon overproduction of the competence regulatory factor TfoX. While little is known about the regulatory pathway(s) that controls V. fischeri competence, this microbe encodes homologs of factors that control competence in the well-studied V. cholerae To further develop V. fischeri as a genetically tractable organism, we evaluated the roles of some of these competence homologs. Using TfoX-overproducing cells, we found that competence depends upon LitR, the homolog of V. cholerae master quorum-sensing and competence regulator HapR, and upon homologs of putative pilus genes that in V. cholerae facilitate DNA uptake. Disruption of genes for negative regulators upstream of LitR, namely, the LuxO protein and the small RNA (sRNA) Qrr1, resulted in increased transformation frequencies. Unlike LitR-controlled light production, however, competence did not vary with cell density under tfoX overexpression conditions. Analogous to the case with V. cholerae, the requirement for LitR could be suppressed by loss of the Dns nuclease. We also found a role for the putative competence regulator CytR. Finally, we determined that transformation frequencies varied depending on the TfoX-encoding plasmid, and we developed a new dual tfoX and litR overexpression construct that substantially increased the transformation frequency of a less genetically tractable strain. By advancing the ease of genetic manipulation of V. fischeri, these findings will facilitate the rapid discovery of genes involved in physiologically relevant processes, such as biofilm formation and host colonization.IMPORTANCE The ability of bacteria to take up DNA (competence) and incorporate foreign DNA into their genomes (transformation) permits them to rapidly evolve and gain new traits and/or acquire antibiotic resistances. It also facilitates laboratory-based investigations into mechanisms of specific phenotypes, such as those involved in host colonization. Vibrio fischeri has long been a model for symbiotic bacterium-host interactions as well as for other aspects of its physiology, such as bioluminescence and biofilm formation. Competence of V. fischeri can be readily induced upon overexpression of the competence factor TfoX. Relatively little is known about the V. fischeri competence pathway, although homologs of factors known to be important in V. cholerae competence exist. By probing the importance of putative competence factors that control transformation of V. fischeri, this work deepens our understanding of the competence process and advances our ability to genetically manipulate this important model organism.


Assuntos
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/genética , DNA/metabolismo , Transativadores/genética , Transformação Bacteriana
5.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33187995

RESUMO

N-Acetylmuramoyl-l-alanine amidases are periplasmic hydrolases that cleave the amide bond between N-acetylmuramic acid and alanine in peptidoglycan (PG). Unlike many Gram-negative bacteria that encode redundant periplasmic amidases, Vibrio fischeri appears to encode a single protein that is homologous to AmiB of Vibrio cholerae We screened a V. fischeri transposon mutant library for strains altered in biofilm production and discovered a biofilm-overproducing strain with an insertion in amiB (VF_2326). Further characterization of biofilm enhancement suggested that this phenotype was due to the overproduction of cellulose, and it was dependent on the bcsA cellulose synthase. Additionally, the amiB mutant was nonmotile, perhaps due to defects in its ability to septate during division. The amidase mutant was unable to compete with the wild type for the colonization of V. fischeri's symbiotic host, the squid Euprymna scolopes In single-strain inoculations, host squid inoculated with the mutant eventually became colonized but with a much lower efficiency than in squid inoculated with the wild type. This observation was consistent with the pleiotropic effects of the amiB mutation and led us to speculate that motile suppressors of the amiB mutant were responsible for the partially restored colonization. In culture, motile suppressor mutants carried point mutations in a single gene (VF_1477), resulting in a partial restoration of wild-type motility. In addition, these point mutations reversed the effect of the amiB mutation on cellulosic biofilm production. These data are consistent with V. fischeri AmiB possessing amidase activity; they also suggest that AmiB suppresses cellulosic biofilm formation but promotes successful host colonization.IMPORTANCE Peptidoglycan (PG) is a critical microbe-associated molecular pattern (MAMP) that is sloughed by cells of V. fischeri during symbiotic colonization of squid. Specifically, this process induces significant remodeling of a specialized symbiotic light organ within the squid mantle cavity. This phenomenon is reminiscent of the loss of ciliated epithelium in patients with whooping cough due to the production of PG monomers by Bordetella pertussis Furthermore, PG processing machinery can influence susceptibility to antimicrobials. In this study, we report roles for the V. fischeri PG amidase AmiB, including the beneficial colonization of squid, underscoring the urgency to more deeply understand PG processing machinery and the downstream consequences of their activities.


Assuntos
Aliivibrio fischeri/enzimologia , Amidoidrolases/fisiologia , Proteínas de Bactérias/fisiologia , Aliivibrio fischeri/citologia , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Amidoidrolases/genética , Proteínas de Bactérias/genética , Biofilmes , Divisão Celular , Mutação , Simbiose
6.
Methods Mol Biol ; 2016: 87-104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31197712

RESUMO

Mutagenizing bacterial genomes with selectable transposon insertions is an effective approach for identifying the genes underlying important phenotypes. Specific bacteria may require different tools and methods for effective transposon mutagenesis, and here we describe methods to mutagenize Vibrio fischeri using an engineered mini-Tn5 transposon with synthetic "mosaic" transposon ends. The transposon is delivered by conjugation on a plasmid that cannot replicate in V. fischeri and that encodes a hyperactive transposase outside the transposon itself. The chromosomal location of insertions can be readily identified by cloning and/or PCR-based methods described here. Although developed in V. fischeri, these tools and methods have proven effective in some other bacteria as well.


Assuntos
Aliivibrio fischeri/genética , Elementos de DNA Transponíveis , Clonagem Molecular/métodos , Mutagênese Insercional/métodos , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , Transposases/genética
7.
J Bacteriol ; 194(15): 3995-4002, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22636772

RESUMO

Vibrio fischeri cells are the sole colonists of a specialized light organ in the mantle cavity of the sepiolid squid Euprymna scolopes. The process begins when the bacteria aggregate in mucus secretions outside the light organ. The cells eventually leave the aggregate, enter the light organ, and encounter a rich supply of peptides. The need to dissociate from mucus and presumably utilize peptides led us to hypothesize that protease activity is integral to the colonization process. Protease activity associated with whole cells of Vibrio fischeri strain ES114 was identified as the product of a putative cell membrane-associated aminopeptidase (PepN). To characterize this activity, the aminopeptidase was cloned, overexpressed, and purified. Initial steady-state kinetic studies revealed that the aminopeptidase has broad activity, with a preference for basic and hydrophobic side chains and k(cat) and K(m) values that are lower and smaller, respectively, than those of Escherichia coli PepN. A V. fischeri mutant unable to produce PepN is significantly delayed in its ability to colonize squid within the first 12 h, but eventually it establishes a wild-type colonization level. Likewise, in competition with the wild type for colonization, the mutant is outcompeted at 12 h postinoculation but then competes evenly by 24 h. Also, the PepN-deficient strain fails to achieve wild-type levels of cells in aggregates, suggesting an explanation for the initial colonization delay. This study provides a foundation for more studies on PepN expression, localization, and role in the early stages of squid colonization.


Assuntos
Aliivibrio fischeri/enzimologia , Aliivibrio fischeri/fisiologia , Aminopeptidases/metabolismo , Decapodiformes/microbiologia , Aliivibrio fischeri/crescimento & desenvolvimento , Sequência de Aminoácidos , Aminopeptidases/genética , Estruturas Animais/microbiologia , Animais , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Cinética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Appl Environ Microbiol ; 73(6): 1825-33, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17277225

RESUMO

The cold-water-fish pathogen Vibrio salmonicida expresses a functional bacterial luciferase but produces insufficient levels of its aliphatic-aldehyde substrate to be detectably luminous in culture. Our goals were to (i) better explain this cryptic bioluminescence phenotype through molecular characterization of the lux operon and (ii) test whether the bioluminescence gene cluster is associated with virulence. Cloning and sequencing of the V. salmonicida lux operon revealed that homologs of all of the genes required for luminescence are present: luxAB (luciferase) and luxCDE (aliphatic-aldehyde synthesis). The arrangement and sequence of these structural lux genes are conserved compared to those in related species of luminous bacteria. However, V. salmonicida strains have a novel arrangement and number of homologs of the luxR and luxI quorum-sensing regulatory genes. Reverse transcriptase PCR analysis suggests that this novel arrangement of quorum-sensing genes generates antisense transcripts that may be responsible for the reduced production of bioluminescence. In addition, infection with a strain in which the luxA gene was mutated resulted in a marked delay in mortality among Atlantic salmon relative to infection with the wild-type parent in single-strain challenge experiments. In mixed-strain competition between the luxA mutant and the wild type, the mutant was attenuated up to 50-fold. It remains unclear whether the attenuation results from a direct loss of luciferase or a polar disturbance elsewhere in the lux operon. Nevertheless, these findings document for the first time an association between a mutation in a structural lux gene and virulence, as well as provide a new molecular system to study Vibrio pathogenesis in a natural host.


Assuntos
Aliivibrio salmonicida/genética , Aliivibrio salmonicida/patogenicidade , Doenças dos Peixes/microbiologia , Luciferases Bacterianas/genética , Óperon/genética , Vibrioses/veterinária , Aliivibrio salmonicida/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Bacteriano/química , DNA Bacteriano/genética , Gadus morhua/microbiologia , Dados de Sequência Molecular , Mutação , RNA Antissenso/biossíntese , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência , Análise de Sobrevida , Vibrioses/microbiologia , Vibrioses/mortalidade , Virulência/genética
9.
Mol Microbiol ; 45(1): 131-43, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12100554

RESUMO

Vibrio fischeri is the bacterial symbiont within the light-emitting organ of the sepiolid squid Euprymna scolopes. Upon colonizing juvenile squids, bacterial symbionts grow on host-supplied nutrients, while providing a bioluminescence that the host uses during its nocturnal activities. Mutant bacterial strains that are unable to emit light have been shown to be defective in normal colonization. A 606 bp open reading frame was cloned from V. fischeri that encoded a protein, which we named LitR, that had about 60% identity to four related regulator proteins: Vibrio cholerae HapR, Vibrio harveyi LuxR, Vibrio parahaemolyticus OpaR and Vibrio vulnificus SmcR. When grown in culture, cells of V. fischeri strain PMF8, in which litR was insertionally inactivated, were delayed in the onset of luminescence induction and emitted only about 20% as much light per cell as its parent. Protein-binding studies suggested that LitR enhances quorum sensing by regulating the transcription of the luxR gene. Interestingly, when competed against its parent in mixed inocula, PMF8 became the predominant symbiont present in 83% of light organs. Thus, the litR mutation appears to represent a novel class of mutations in which the loss of a regulatory gene function enhances the bacterium's competence in initiating a benign infection.


Assuntos
Decapodiformes/microbiologia , Regulação Bacteriana da Expressão Gênica , Medições Luminescentes , Simbiose , Transativadores/metabolismo , Vibrio/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Decapodiformes/anatomia & histologia , Luz , Dados de Sequência Molecular , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Transativadores/química , Transativadores/genética , Vibrio/genética , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...