Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Pathog ; 12: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322308

RESUMO

BACKGROUND: Arcobacter species, particularly A. butzleri, but also A. cryaerophilus constitute emerging pathogens causing gastroenteritis in humans. However, isolation of Arcobacter may often fail during routine diagnostic procedures due to the lack of standard protocols. Furthermore, defined breakpoints for the interpretation of antimicrobial susceptibilities of Arcobacter are missing. Hence, reliable epidemiological data of human Arcobacter infections are scarce and lacking for Germany. We therefore performed a 13-month prospective Arcobacter prevalence study in German patients. RESULTS: A total of 4636 human stool samples was included and Arcobacter spp. were identified from 0.85% of specimens in 3884 outpatients and from 0.40% of specimens in 752 hospitalized patients. Overall, A. butzleri was the most prevalent species (n = 24; 67%), followed by A. cryaerophilus (n = 10; 28%) and A. lanthieri (n = 2; 6%). Whereas A. butzleri, A. cryaerophilus and A. lanthieri were identified in outpatients, only A. butzleri could be isolated from samples of hospitalized patients. Antimicrobial susceptibility testing of Arcobacter isolates revealed high susceptibilities to ciprofloxacin, whereas bimodal distributions of MICs were observed for azithromycin and ampicillin. CONCLUSIONS: In summary, Arcobacter including A. butzleri, A. cryaerophilus and A. lanthieri could be isolated in 0.85% of German outpatients and ciprofloxacin rather than other antibiotics might be appropriate for antibiotic treatment of infections. Further epidemiological studies are needed, however, to provide a sufficient risk assessment of Arcobacter infections in humans.

2.
Gut Pathog ; 12: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31921357

RESUMO

BACKGROUND: Arcobacter constitute emerging food- and waterborne pathogens causing gastroenteritis in humans, but the underlying mechanisms are only incompletely understood. We therefore characterized Arcobacter isolates derived from human stool samples that had been collected during a prospective prevalence study in Germany in vitro. Thirty-six bacterial isolates belonging to the species A. butzleri (n = 24), A. cryaerophilus (n = 10) and A. lanthieri (n = 2) were genotyped by ERIC-PCR, the presence of 10 putative virulence genes was assessed and cytotoxic effects on the human intestinal cell line HT-29/B6 were analyzed applying the WST-assay. RESULTS: Genotyping revealed high genetic diversity within the species A. butzleri, A. cryaerophilus and A. lanthieri. Both, A. butzleri and A. lanthieri encoded for a large number of putative virulence genes, while fewer genes were detectable in A. cryaerophilus isolates. Notably, the three cytolethal distending toxin (CDT) genes cdtA, cdtB and cdtC were abundant in both A. lanthieri isolates. Furthermore, all A. butzleri and A. lanthieri, but only one of the A. cryaerophilus isolates exerted cytotoxic effects. CONCLUSIONS: Our study provides evidence for the abundance of putative virulence genes in Arcobacter isolates and prominent cytotoxic effects of A. butzleri and A. lanthieri in vitro. The presence of cdtA, cdtB, cdtC in A. lanthieri points towards CDT secretion as potential mechanism underlying cytotoxicity as opposed to A. butzleri. However, the association of the Arcobacter virulence factors detected and human morbidity should be addressed in future studies.

3.
Eur J Microbiol Immunol (Bp) ; 8(2): 53-61, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29997912

RESUMO

Within 1 week following high-dose Toxoplasma gondii infection, mice develop lethal necrotizing ileitis. However, data from a subacute T. gondii-induced ileitis model are scarce. Therefore, mice harboring a human gut microbiota were perorally infected with one cyst of T. gondii. Within 9 days post-infection, the intestinal microbiota composition shifted towards higher loads of commensal enterobacteria and enterococci. Following T. gondii infection, mice were clinically only mildly affected, whereas ≈60% of mice displayed fecal blood and mild-to-moderate ileal histopathological changes. Intestinal inflammation was further characterized by increased apoptotic intestinal epithelial cells, which were accompanied by elevated proliferating gut epithelial cell numbers. As compared to naive controls, infected mice displayed elevated numbers of intestinal T lymphocytes and regulatory T-cells and increased pro-inflammatory mediator secretion. Remarkably, T. gondii-induced apoptotic and pro-inflammatory immune responses were not restricted to the gut, but could also be observed in extra-intestinal compartments including kidney, liver, and lung. Strikingly, low-dose T. gondii infection resulted in increased serum levels of pro- and anti-inflammatory cytokines. In conclusion, the here presented subacute ileitis model following peroral low-dose T. gondii infection of humanized mice allows for detailed investigations of the molecular mechanism underlying the "ménage à trois" of pathogens, human gut microbiota, and immunity.

4.
Front Immunol ; 8: 397, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469619

RESUMO

Compelling evidence demonstrates the pivotal role of the commensal intestinal microbiota in host physiology and the detrimental effects of its perturbations following antibiotic treatment. Aim of this study was to investigate the impact of antibiotics induced depletion and subsequent restoration of the intestinal microbiota composition on the murine mucosal and systemic immunity. To address this, conventional C57BL/6j mice were subjected to broad-spectrum antibiotic treatment for 8 weeks. Restoration of the intestinal microbiota by peroral fecal microbiota transplantation (FMT) led to reestablishment of small intestinal CD4+, CD8+, and B220+ as well as of colonic CD4+ cell numbers as early as 7 days post-FMT. However, at d28 following FMT, colonic CD4+ and B220+ cell numbers were comparable to those in secondary abiotic (ABx) mice. Remarkably, CD8+ cell numbers were reduced in the colon upon antibiotic treatment, and FMT was not sufficient to restore this immune cell subset. Furthermore, absence of gut microbial stimuli resulted in decreased percentages of memory/effector T cells, regulatory T cells, and activated dendritic cells in the small intestine, colon, mesenteric lymph nodes (MLN), and spleen. Concurrent antibiotic treatment caused decreased cytokine production (IFN-γ, IL-17, IL-22, and IL-10) of CD4+ cells in respective compartments. These effects were, however, completely restored upon FMT. In summary, broad-spectrum antibiotic treatment resulted in profound local (i.e., small and large intestinal), peripheral (i.e., MLN), and systemic (i.e., splenic) changes in the immune cell repertoire that could, at least in part, be restored upon FMT. Further studies need to unravel the distinct molecular mechanisms underlying microbiota-driven changes in immune homeostasis subsequently providing novel therapeutic or even preventive approaches in human immunopathologies.

5.
Sci Rep ; 7(1): 2138, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522817

RESUMO

Campylobacter jejuni infections are progressively increasing worldwide. Probiotic treatment might open novel therapeutic or even prophylactic approaches to combat campylobacteriosis. In the present study secondary abiotic mice were generated by broad-spectrum antibiotic treatment and perorally reassociated with a commensal murine Lactobacillus johnsonii strain either 14 days before (i.e. prophylactic regimen) or 7 days after (i.e. therapeutic regimen) peroral C. jejuni strain 81-176 infection. Following peroral reassociation both C. jejuni and L. johnsonii were able to stably colonize the murine intestinal tract. Neither therapeutic nor prophylactic L. johnsonii application, however, could decrease intestinal C. jejuni burdens. Notably, C. jejuni induced colonic apoptosis could be ameliorated by prophylactic L. johnsonii treatment, whereas co-administration of L. johnsonii impacted adaptive (i.e. T and B lymphocytes, regulatory T cells), but not innate (i.e. macrophages and monocytes) immune cell responses in the intestinal tract. Strikingly, C. jejuni induced intestinal, extra-intestinal and systemic secretion of pro-inflammatory mediators (such as IL-6, MCP-1, TNF and nitric oxide) could be alleviated by peroral L. johnsonii challenge. In conclusion, immunomodulatory probiotic species might offer valuable strategies for prophylaxis and/or treatment of C. jejuni induced intestinal, extra-intestinal as well as systemic pro-inflammatory immune responses in vivo.


Assuntos
Infecções por Campylobacter/terapia , Lactobacillus/patogenicidade , Probióticos/uso terapêutico , Animais , Apoptose , Linfócitos B/imunologia , Campylobacter jejuni/patogenicidade , Quimiocina CCL2/metabolismo , Feminino , Interleucina-6/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-28529928

RESUMO

There is compelling evidence linking the commensal intestinal microbiota with host health and, in turn, antibiotic induced perturbations of microbiota composition with distinct pathologies. Despite the attractiveness of probiotic therapy as a tool to beneficially alter the intestinal microbiota, its immunological effects are still incompletely understood. The aim of the present study was to assess the efficacy of the probiotic formulation VSL#3 consisting of eight distinct bacterial species (including Streptococcus thermophilus, Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. Bulgaricus) in reversing immunological effects of microbiota depletion as compared to reassociation with a complex murine microbiota. To address this, conventional mice were subjected to broad-spectrum antibiotic therapy for 8 weeks and perorally reassociated with either VSL#3 bacteria or a complex murine microbiota. VSL#3 recolonization resulted in restored CD4+ and CD8+ cell numbers in the small and large intestinal lamina propria as well as in B220+ cell numbers in the former, whereas probiotic intervention was not sufficient to reverse the antibiotic induced changes of respective cell populations in the spleen. However, VSL#3 application was as efficient as complex microbiota reassociation to attenuate the frequencies of regulatory T cells, activated dendritic cells and memory/effector T cells in the small intestine, colon, mesenteric lymph nodes, and spleen. Whereas broad-spectrum antibiotic treatment resulted in decreased production of cytokines such as IFN-γ, IL-17, IL-22, and IL-10 by CD4+ cells in respective immunological compartments, VSL#3 recolonization was sufficient to completely recover the expression of the anti-inflammatory cytokine IL-10 without affecting pro-inflammatory mediators. In summary, the probiotic compound VSL#3 has an extensive impact on mucosal, peripheral, and systemic innate as well as adaptive immunity, exerting beneficial anti-inflammatory effects in intestinal as well as systemic compartments. Hence, VSL#3 might be considered a therapeutic immunomodulatory tool following antibiotic therapy.


Assuntos
Imunidade Adaptativa/imunologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Imunidade Inata/imunologia , Probióticos/uso terapêutico , Animais , Antibacterianos/farmacologia , Linfócitos B , Bactérias/classificação , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Colo , Citocinas/metabolismo , Células Dendríticas/imunologia , Combinação de Medicamentos , Fezes/microbiologia , Feminino , Imuno-Histoquímica , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/farmacologia , Baço , Linfócitos T/imunologia , Linfócitos T Reguladores
7.
Gut Pathog ; 9: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413453

RESUMO

BACKGROUND: The incidence of human Campylobacter jejuni infections is progressively increasing worldwide. Probiotic compounds might open up valuable tools to decrease pathogen burden and subsequent pro-inflammatory immune responses, but in vivo data are scarce. METHODS AND RESULTS: Secondary abiotic mice generated by broad-spectrum antibiotic treatment were perorally challenged with the commercial probiotic compound VSL#3 consisting of Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei, and Lactobacillus delbrueckii ssp. bulgaricus) either 5 days before (i.e. prophylactic regimen) or after (i.e. therapeutic regimen) peroral C. jejuni strain 81-176 infection, and analyzed 3 weeks following the initial bacterial re-association. Upon challenge, mice were colonized with the probiotic bacteria and/or C. jejuni at comparable intestinal loads, but co-colonization did not result in reduction of the pathogen burden. Remarkably, prophylactic as well as therapeutic VSL#3 treatment of C. jejuni infected mice ameliorated intestinal apoptosis and pro-inflammatory immune responses as indicated by lower numbers of innate and adaptive immune cell populations in the murine colon upon probiotic prophylaxis or treatment and reduced colonic concentrations of pro-inflammatory mediators including IL-6 and MCP-1. Importantly, concentrations of anti-inflammatory mediators such as IL-10 were significantly elevated in the colon of probiotics treated mice as compared to untreated controls. Strikingly, prophylactic VSL#3 treatment attenuated C. jejuni induced systemic pro-inflammatory responses as indicated by less TNF and IL-12p70 secretion in the spleen of VSL#3 pre-treated as compared to non-treated mice. CONCLUSION: Administration of probiotic formulations such as VSL#3 might open up valuable strategies for prophylaxis and/or treatment of C. jejuni induced intestinal and systemic sequelae in vivo by the suppression of pro-inflammatory and induction of anti-inflammatory responses.

8.
Eur J Microbiol Immunol (Bp) ; 6(4): 253-271, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980855

RESUMO

This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host-microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these "secondary abiotic mice" have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...